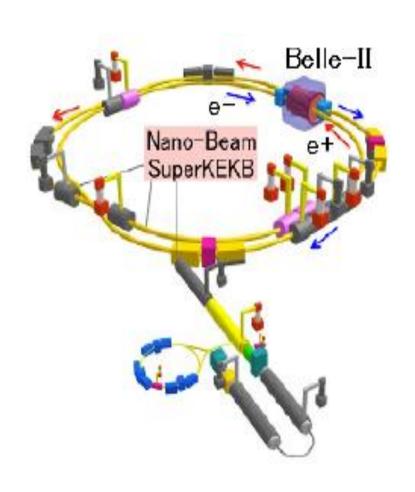
Belle II 実験における Bhabha散乱のトリガー条件の検討

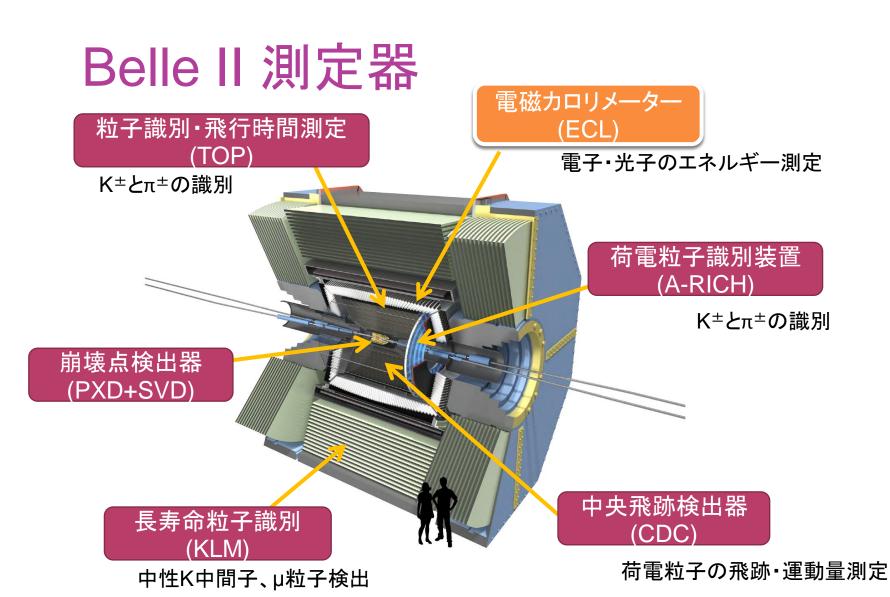
奈良女子大学大学院 人間文化研究科 物理科学専攻 高エネルギー物理学研究室 福井 千尋

目次

- ➤ Belle II 実験
 - ▶ Bファクトリー実験とその高度化
 - > SuperKEKB加速器
 - ➤ Belle II 測定器
- ➤ 低マルチプリシティ事象とBhabha散乱


 - > Bhabha散乱
 - ▶ 輻射補正とイベントジェネレーター
- ➤ Bhabha散乱のトリガー条件
 - ➤ Belle 実験でのトリガー
 - ➤ Belle II 実験での改善の可能性
 - > Bhabha識別条件の付加
- > まとめ

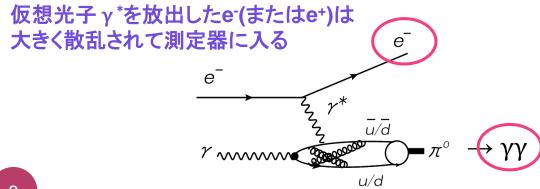
Belle II 実験


Bファクトリー実験とその高度化

- ▶ B中間子を大量に生成し、その崩壊過程を研究
- ➤ 高エネルギー加速器研究機構(Belle実験)とSLAC国立加速器研究所ではB中間子の崩壊におけるCP対称性の破れを測定
 - → 小林・益川のノーベル物理学賞にも決定的な貢献
- ▶ B⁰→ΦK⁰やB⁰→η' K⁰など稀崩壊過程におけるCP非保存の測定による新物理の探索
 → 更なるルミノシティの向上が必要
- 様々な物理過程(終状態に発生する粒子数が少ない低マルチプリシティ事象など)も研究可能になる

SuperKEKB加速器

- ➤ 電子7GeV・陽電子4GeVの非対 称エネルギー衝突加速器
- ➤ 新物理探索のため、ルミノシティ 向上(KEKB加速器で到達したルミ ノシティの約40倍)
- 既存の周長3kmのトンネル内の加速器コンポーネントの置換によりアップグレード
- 極低エミッタンスのビームを有限 角度で衝突させるナノビーム方式

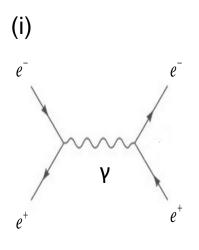


加速器の高度化に対応するよう検出器をアップグレード

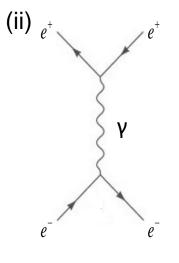
低マルチプリシティ事象と Bhabha散乱

γγ^{*}→π⁰事象 (低マルチプリシティ事象の代表)

- > 仮想光子とほぼ実光子の衝突によるπ0生成
- ➤ Transition Form Factor という非摂動論的QCDの最も基本的な量の一つ
- ightharpoonup 終状態では電子(or 陽電子)一つと π^0 (ightharpoonup(ightharpoonup) 多くは近接)一つが検出される
- ➤ Bhabha散乱(電子・陽電子の弾性散乱)と識別が難しい

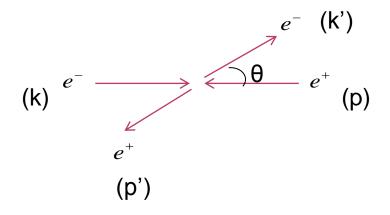


参考 Phy.Rev.D86,092007(2012)


Bhabha散乱

最低次のファインマン図

$$e^+e^- \rightarrow e^+e^-$$


s チャンネル

t チャンネル

- ▶ 量子電磁気学(QED)に基づく= 既によくわかっている
- ▶ 測定器の較正やルミノシティ 測定に必要なだけ記録すれ ば十分
- 終状態が電子以外のフェルミ 粒子対であれば(i)のみ。Bhabha散乱は(ii)も寄与し、 これが大きい
- O(α²)の反応

最低次の断面積

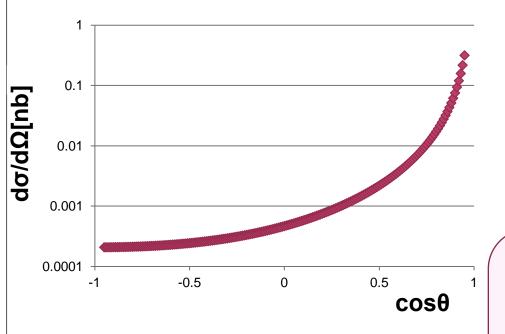
Mandelstam変数

$$s \equiv (k+p)^2 = 4E^2$$

 $t \equiv (k-k')^2 = -2E^2(1-\cos\theta)$
 $u \equiv (k-p')^2 = -2E^2(1+\cos\theta)$

不変振幅の絶対値の二乗

$$|m|^2 = 2e^4\left(\frac{s^2 + u^2}{t^2} + \frac{2u^2}{ts} + \frac{u^2 + t^2}{s^2}\right)$$


$$= 2e^4\left\{\frac{4 + (1 + \cos\theta)^2}{(1 - \cos\theta)^2} - \frac{(1 + \cos\theta)^2}{1 - \cos\theta} + \frac{(1 + \cos\theta)^2 + (1 - \cos\theta)^2}{4}\right\}$$

微分断面積

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} |m|^2$$

最低次の散乱断面積

<微分断面積>

重心系エネルギーをY(4S) にあわせるとB中間子対を生成

$$\sigma(e^+e^- \rightarrow B\overline{B}) \sim 1.1 \text{ nb}$$

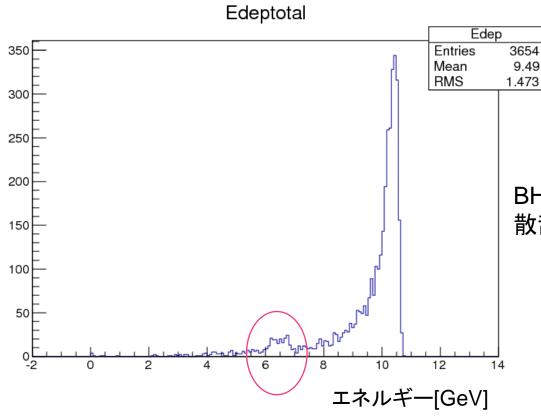
散乱角17° < θ <163° (重心系)で **39.9 nb**

→ 事象を間引き(プリスケール)する

もしB中間子対の生成と同じレートにしたければ 1/40にプリスケール

輻射補正

Bhabha散乱のO(α³)補正項

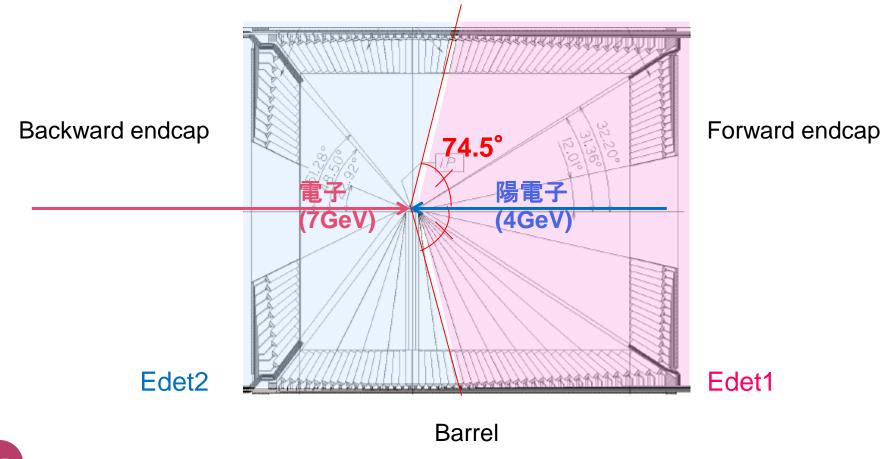

このような補正項も考慮してBhabha散乱を生成する イベントジェネレーター(BHWIDEプログラム)を用いた

Bhabha散乱のトリガー条件

Bhabha散乱の 電磁カロリメーターでの全検出エネルギー

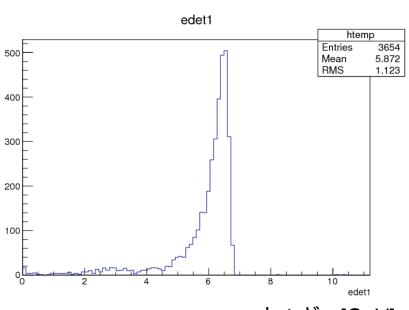
3654

9.49

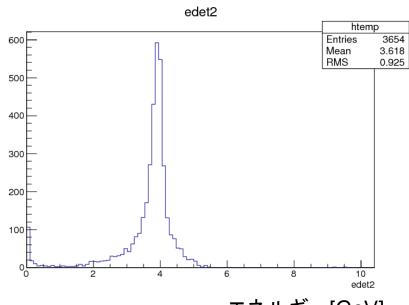

BHWIDEジェネレーターで 散乱角19.7° < θ <160.3°(重心系)

全検出エネルギーが 低い事象もある

Bhbaha散乱はECLで検出する エネルギーが大きい! (電子7GeV・陽電子4GeVの衝 突実験)

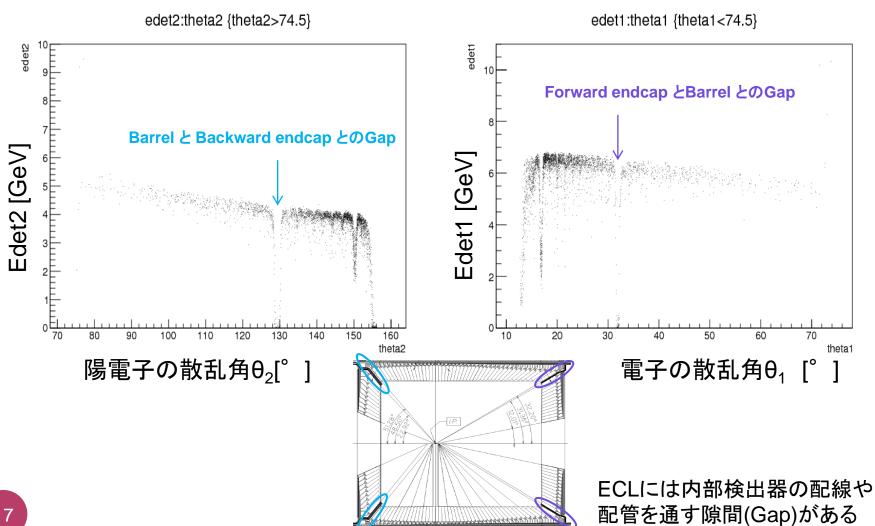

電子・陽電子によるエネルギー損失

 θ =90° in CM \Leftrightarrow θ =74.5° in lab.

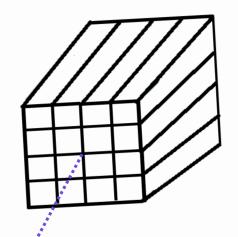

Edet1,Edet2の分布

(電子7GeV・陽電子4GeVの衝突実験)

エネルギー[GeV]


電子が支配的

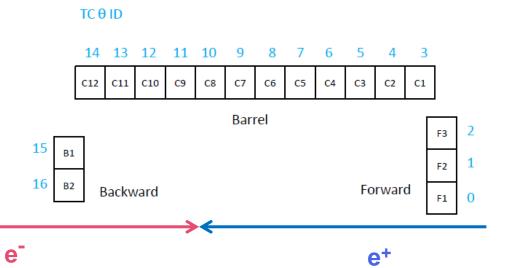
エネルギー[GeV]


陽電子が支配的

Edet1のθ₁依存, Edet2のθ₂依存

電磁カロリメーターにおけるトリガーセル(TC)

(CsIカウンター 8,736 本)

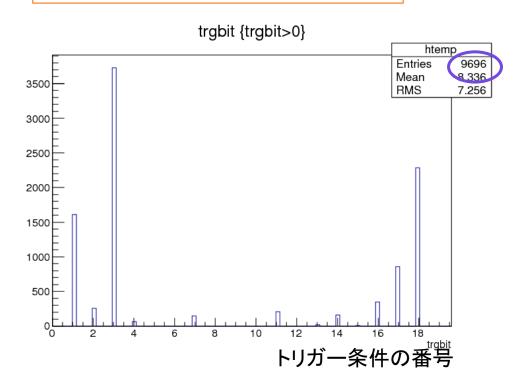


4×4=16本のCsIカウンターの東 = トリガーセル(TC)

- ➤ Belle / Belle II では全体で576個のTC
- TC内の16本のカウンター検出エネル ギー和 > 0.1GeV を要求

衝突点(IP)

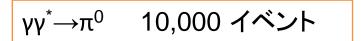
Belle実験でのBhabhaトリガー

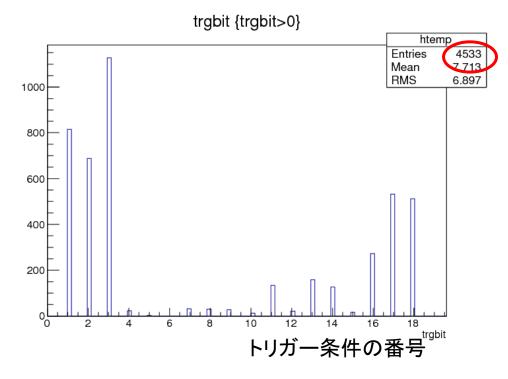


同一の θ (ビーム軸からのpolar angle) にあるTCのエネルギーを足し、 $F1\sim F3$, $C1\sim C12$, $B1\sim B2$ とする。それらの組み合わせ18通りを考慮

trgbit	Combination(θ ID)	Energy cut(GeV)
1	F1+F2+F3+B1+B2	5.0
2	F3+C12	3.0
3	F2+F3(+backward gap)	5.0
4	C1(+backward gap)	4.0
5	C1+C11+C12	5.0
6	C2+C11+C12	5.0
7	C1+C2+C11	5.0
8	C2+C10+C11	5.0
9	C2+C9+C10	5.0
10	C2+C3+C10	5.0
11	C2+C3+C9	5.0
12	C3+C4+C9	5.0
13	C3+C4+C8	5.0
14	C4+C5+C8	5.0
15	C5+C7+C8	5.0
16	C5+C6+C7	5.0
17	C11+C12(+forward gap)	3.0
18	B1(+forward gap)	3.0

Bhabha識別条件のパターン分布

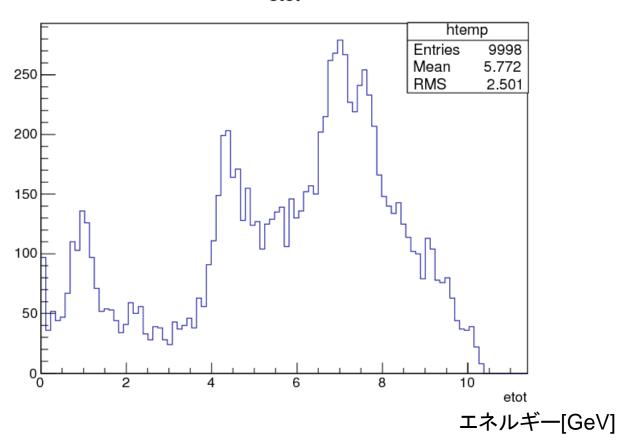

Bhabha散乱 10,000 イベント



検出	効	率	9	70	%
----	---	---	---	----	----------

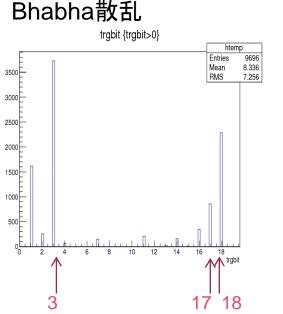
trgbit	Combination(θ ID)	Energy cut(GeV)
	, ,	
1	F1+F2+F3+B1+B2	5.0
2	F3+C12	3.0
3	F2+F3(+backward gap)	5.0
4	C1(+backward gap)	4.0
5	C1+C11+C12	5.0
6	C2+C11+C12	5.0
7	C1+C2+C11	5.0
8	C2+C10+C11	5.0
9	C2+C9+C10	5.0
10	C2+C3+C10	5.0
11	C2+C3+C9	5.0
12	C3+C4+C9	5.0
13	C3+C4+C8	5.0
14	C4+C5+C8	5.0
15	C5+C7+C8	5.0
16	C5+C6+C7	5.0
17	C11+C12(+forward gap)	3.0
18	B1(+forward gap)	3.0

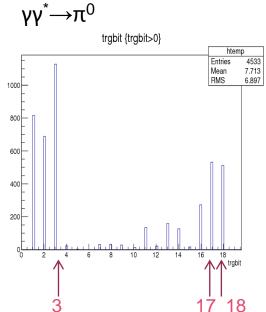
Bhabha識別条件のパターン分布



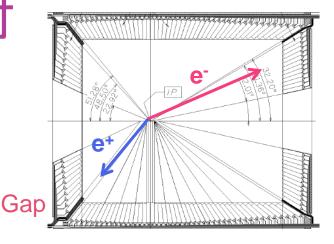
trgbit	Combination(θ ID)	Energy cut(GeV)
1	F1+F2+F3+B1+B2	5.0
2	F3+C12	3.0
3	F2+F3(+backward gap)	5.0
4	C1(+backward gap)	4.0
5	C1+C11+C12	5.0
6	C2+C11+C12	5.0
7	C1+C2+C11	5.0
8	C2+C10+C11	5.0
9	C2+C9+C10	5.0
10	C2+C3+C10	5.0
11	C2+C3+C9	5.0
12	C3+C4+C9	5.0
13	C3+C4+C8	5.0
14	C4+C5+C8	5.0
15	C5+C7+C8	5.0
16	C5+C6+C7	5.0
17	C11+C12(+forward gap)	3.0
18	B1(+forward gap)	3.0

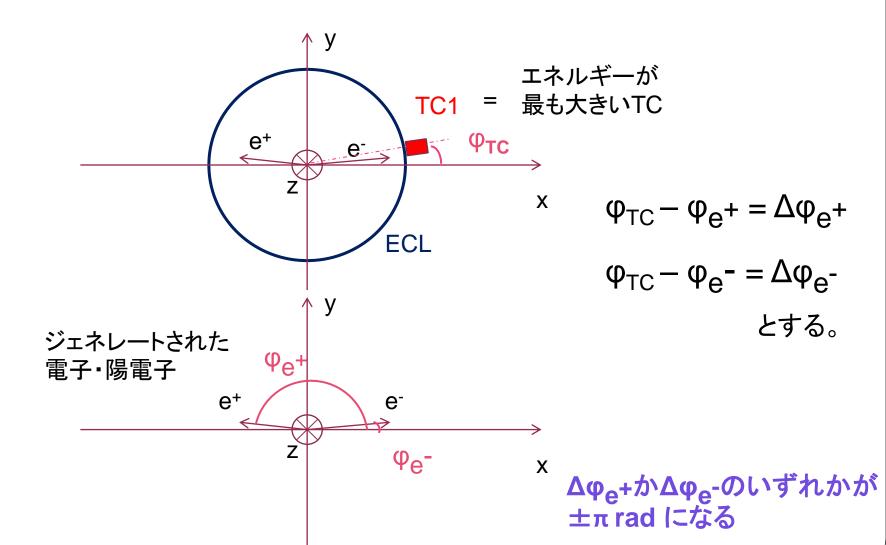
誤認率45%


γγ*→π⁰事象の ECLにおける全検出エネルギー


etot

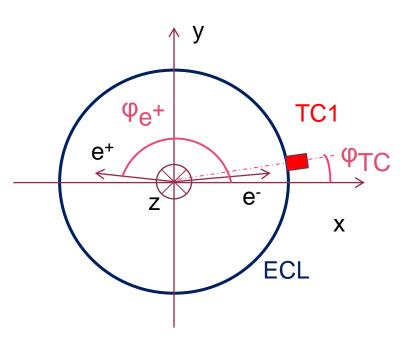
Bhabha散乱と似てECLでとらえるエネルギーが非常に大きい

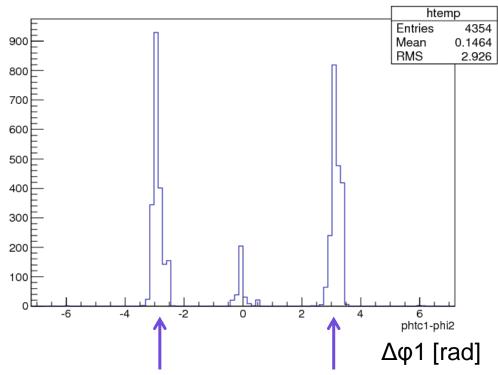

Bhabhaトリガーの検討


Gapを考慮しているトリガー条件(パターン番号 =3,4,17,18)で識別されたものについて考える。

Ex) パターン番号 = 3

trgbit	$Combination(\theta \ ID)$	Energy cut(GeV)
1	F1+F2+F3+B1+B2	5.0
2	F3+C12	3.0
3	F2+F3(+backward gap)	5.0
4	C1(+backward gap)	4.0
5	C1+C11+C12	5.0
6	C2+C11+C12	5.0
7	C1+C2+C11	5.0
8	C2+C10+C11	5.0
9	C2+C9+C10	5.0
10	C2+C3+C10	5.0
11	C2+C3+C9	5.0
12	C3+C4+C9	5.0
13	C3+C4+C8	5.0
14	C4+C5+C8	5.0
15	C5+C7+C8	5.0
16	C5+C6+C7	5.0
17	C11+C12(+forward gap)	3.0
18	B1(+forward gap)	3.0

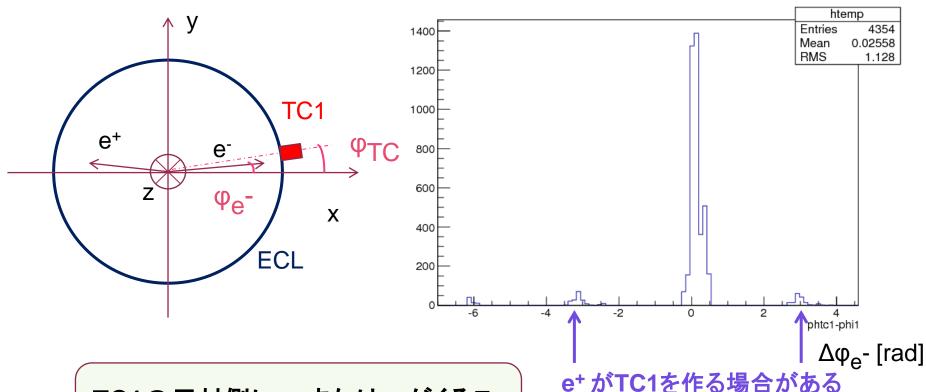

Bhabha散乱の場合



Bhabha散乱の方位角の差(Δφ_e+)

Gapを考慮しているトリガー条件 (パターン番号3,4,17,18のどれか)で識別されたもの

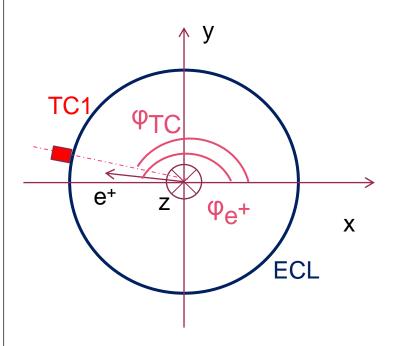
$$\Delta \phi_{\text{e}} + = \phi_{\text{TC}} - \phi_{\text{e}} +$$

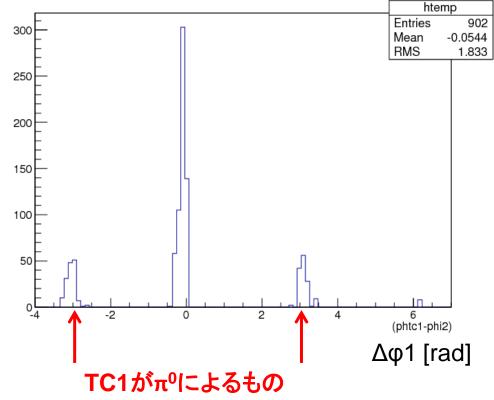

phtc1-pht2 {((theta1>0.2967&&theta1<2.618)&&(theta2>0.2967&&theta2<2.618))&&(trgbit==3||trgbit==4||trgbit==17||trgbit==18)}

±π rad に事象の集中がみられる

Bhabha散乱の方位角の差(Δφ_e-)

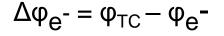
phtc1-phi1 {((theta1>0.2967&&theta1<2.618)&&(theta2>0.2967&&theta1<2.618)}&&(trgbit==3||trgbit==4||trgbit==17||trgbit==18)}

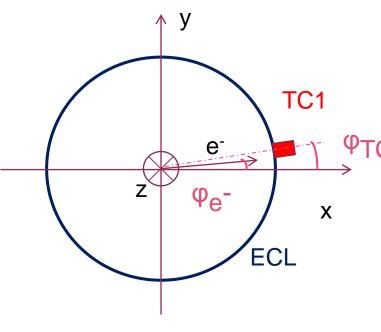

$$\Delta \varphi_{e}$$
- = φ_{TC} - φ_{e} -

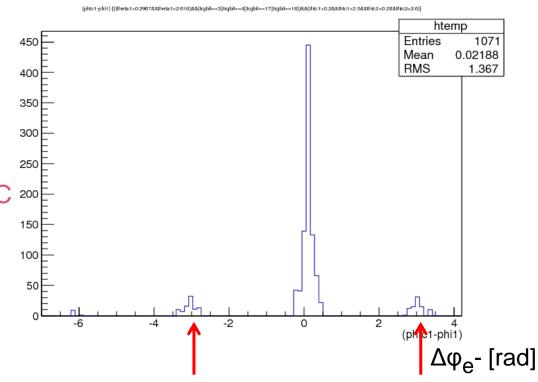

TC1の反対側にe+またはe-がくることを要求してもBhabhaを失わない

$\gamma \gamma^* \rightarrow \pi^0$ 過程(陽電子が大きく散乱した場合) の方位角の差($\Delta \phi_e$ +)

$$\Delta \phi_e$$
+ = ϕ_{TC} - ϕ_e +





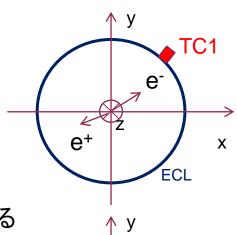


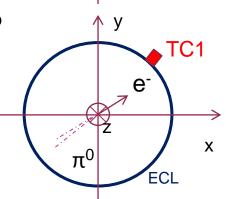
±π rad にくる事象もあるが、量は少ない

$\gamma \gamma^* \rightarrow \pi^0$ 過程(電子が大きく散乱した場合) の方位角の差($\Delta \phi_e$ -)

TC1がπºによるもの

±π rad にくる事象もあるが、量は少ない


Bhabhaトリガー条件の追加


Belle実験でのBhabha識別トリガーにおいてGapを考慮している条件(パターン番号=3,4,17,18)で識別されたものについて以下の条件を追加

- ➤ Bhabha散乱事象 TC1の反対側にe⁻またはe+がある
- - ・ほとんど、大きく散乱されたe⁻(またはe⁺)がTC1をつくる
 - ・反対側に荷電粒子なし

TC1のφとe⁻(またはe⁺)のφの間の相関に着目

結果

Gapを考慮している条件(パターン番号=3,4,17,18)で識別されたものに 新たに方位角の差の条件を追加した。

- ➤ Bhabha散乱事象
 - → 失われない
- - → TC1の反対側にe⁻またはe⁺がある 479 events

これはBhabhaから見分けられない。 $\gamma \gamma^* \rightarrow \pi^0$ として4.8%のロス

まとめ

- ▶ Belle II 実験ではBelle 実験の約40倍のルミノシティを目標にし、高頻度の事象の記録を可能にする。
- 高ルミノシティの実験により、様々な物理過程もこれまでにない感度で研究の対象になる。この中には低マルチプリシティ事象が含まれる。
- ightharpoonup 低マルチプリシティ事象の一つである $\gamma\gamma^* \to \pi^0$ 事象はBhabha散乱に誤認され やすい。ightharpoonup 45%が誤認される
- ho 今回検討した、TC1hoe+またはhoe-の方位角の差に関する条件の追加で $ho \gamma \gamma^*
 ightarrow \pi^0$ 事象をBhabha散乱と誤認する確率が4.8%まで低減可能。
- ▶ 中央飛跡検出器と電磁カロリメーターのように複数の測定器コンポーネントの情報を組み合わせる高レベルトリガーの設定と運用が求められる。