2012年度修士論文

$\psi' \rightarrow J/\psi \pi^+ \pi^-$ モードによる
B 中間子の $\psi' \pi^0 K$ 崩壊に関する研究

奈良女子大学大学院 人間文化研究科
物理科学専攻
高エネルギー物理学研究室

脇田 紘弥佳

2013年2月
目 次

はじめに ... 5

第 1 章 中間子崩壊におけるエキゾチックハドロン研究 6
 1.1 クオークモデルとハドロン 6
 1.2 チャーモニウム .. 7
 1.3 $c\bar{c}$ を含むエキゾチックハドロンの発見 8
 1.3.1 $X(3872)$.. 9
 1.3.2 $Z(4430)^\pm$... 10

第 2 章 実験装置 ... 13
 2.1 KEKB 加速器 .. 13
 2.1.1 非対称エネルギー .. 13
 2.1.2 高いルミノシティー 14
 2.2 Belle 検出器 .. 18
 2.2.1 粒子崩壊点検出器 (SVD) 18
 2.2.2 中央飛跡検出器 (CDC) 18
 2.2.3 エアロジェルチェレンコフカウンター (ACC) 20
 2.2.4 飛行時間測定器 (TOF) 21
 2.2.5 電磁カロリメーター (ECL) 21
 2.2.6 超電導ソレノイド 24
 2.2.7 KLM 粒子検出器 25
 2.2.8 トリガーシステム 25
 2.2.9 データ収集システム (DAQ) 26
 2.2.10 KEKB 計算機システム 27

第 3 章 $B^\pm \to \psi'\pi^0K^\pm$ 過程 32
 3.1 実験データの処理と選別 32
 3.1.1 データ処理と解析の流れ 32
 3.1.2 B 中間子対生成事象の選別 34
 3.1.3 粒子の識別 ... 35
 3.2 $B^\pm \to \psi'\pi^0K^\pm$ 事象の再構成 38
 3.2.1 $J/\psi \to t^+t^-$ の再構成 38
3.2.2 $\psi' \to J/\psi \pi^+ \pi^-$ の再構成 40
3.2.3 $\pi^0 \to \gamma \gamma$ の再構成 42
3.2.4 ΔE および M_{bc} を用いた B 再構成 42
3.2.5 最良 B 候補選別 ... 43
3.2.6 $B^\pm \to \psi' \pi^0 K^\pm$ 位相空間モデルによる検討 46
3.2.7 $B^\pm \to Z(4430)^0 K^\pm$ モデルによる検討 48

3.3 モンテカルロシミュレーションによる既知の過程の期待値の分布 52
3.4 $B^\pm \to \psi' \pi^0 K^\pm$ 信号事象の抽出 53
3.5 $B^\pm \to \psi' K^{*\pm}$ 崩壊分岐比の確認 56
3.5.1 $K^{\pm} \pi^0$ 不変質量へのフィット 56
3.5.2 崩壊分岐比の算出 .. 59

第 4 章 まとめ ... 60
参考文献 ... 61
謝辞 .. 62
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>ハドロン</td>
</tr>
<tr>
<td>1.2</td>
<td>チャーモニウムの質量スペクトル</td>
</tr>
<tr>
<td>1.3</td>
<td>B 中間子からチャーモニウムへの崩壊のファインマンダイアグラム</td>
</tr>
<tr>
<td>1.4</td>
<td>$X(3872)$ 粒子を示す実験データ [1]</td>
</tr>
<tr>
<td>1.5</td>
<td>$Z(4430)$ 粒子を示す実験データ [2]</td>
</tr>
<tr>
<td>1.6</td>
<td>$M^2(K^-\pi^+) - M^2(\pi^+\psi')$ 2次元分布 (ダリッツ分布)</td>
</tr>
<tr>
<td>2.1</td>
<td>KEKB 加速器の概略図</td>
</tr>
<tr>
<td>2.2</td>
<td>Belle 検出器の全体図</td>
</tr>
<tr>
<td>2.3</td>
<td>SVD</td>
</tr>
<tr>
<td>2.4</td>
<td>CDC の断面図</td>
</tr>
<tr>
<td>2.5</td>
<td>ACC</td>
</tr>
<tr>
<td>2.6</td>
<td>ACC のカウンターモジュール</td>
</tr>
<tr>
<td>2.7</td>
<td>TOF/TSC モジュール</td>
</tr>
<tr>
<td>2.8</td>
<td>ECL</td>
</tr>
<tr>
<td>2.9</td>
<td>CsI カウンターの構造</td>
</tr>
<tr>
<td>2.10</td>
<td>Belle トリガーシステム</td>
</tr>
<tr>
<td>2.11</td>
<td>DAQ</td>
</tr>
<tr>
<td>3.1</td>
<td>データ</td>
</tr>
<tr>
<td>3.2</td>
<td>モンテカルロシミュレーションによるレプトン対の不変質量分布</td>
</tr>
<tr>
<td>3.3</td>
<td>実験データによるレプトン対の不変質量分布</td>
</tr>
<tr>
<td>3.4</td>
<td>$-0.58 GeV/c^2 \leq M_{\psi'} - M_{J/\psi} < 0.60 GeV/c^2$ 範囲でのモンテカルロシミュレーションによる ψ' の不変質量分布</td>
</tr>
<tr>
<td>3.5</td>
<td>$-0.58 GeV/c^2 \leq M_{\psi'} - M_{J/\psi} < 0.60 GeV/c^2$ 範囲での実験データによる ψ' の不変質量分布</td>
</tr>
<tr>
<td>3.6</td>
<td>$\gamma\gamma$ 対の不変質量分布</td>
</tr>
<tr>
<td>3.7</td>
<td>$B^{\pm} \to \psi'\pi^0K^{\pm}$ 位相空間モデルによるシグナル事象のシミュレーションデータにおける最良 B 選別前の B 候補数</td>
</tr>
<tr>
<td>3.8</td>
<td>位相空間モデルのシミュレーションデータが示す M_{bc} と ΔE の分布</td>
</tr>
</tbody>
</table>
3.9 正しい組み合わせ (白)、π⁰の再構成時にγを1つ誤ったもの (黄)、両方のγを誤ったもの (緑)、その他の粒子を誤ったもの (青) 47
3.10 Phase space decayのシグナルMCにおけるM(ψ′π⁰)の再構成後と事象生成段階に組み合わせの正誤で分類した再構成したM(ψ′π⁰)と生成時の比 48
3.11 B⁰ ± → Z(4430)⁰K⁺ (Z(4430)⁰ → ψ′π⁰) モンテカルロシミュレーションによるM_bceとΔEの期待される分布 49
3.12 正しい組み合わせ (白)、π⁰の再構成時にγを1つ誤ったもの (黄)、両方のγを誤ったもの (緑)、その他の粒子を誤ったもの (青) 50
3.13 B⁰ ± → Z(4430)⁰K⁺ 過程のシミュレーションにおけるψ′π⁰の不変質量分布 50
3.14 B⁰ ± → Z(4430)⁰K⁺ 過程のシミュレーションにおけるM(ψ′π⁰)の比 (再構成後/事象生成段階) 51
3.15 B → J/ψX過程が示すΔE期待値の分布 52
3.16 実験データのΔEとM_bceの分布 54
3.17 モンテカルロシミュレーションによるψ′K⁺のΔEへのフィット 55
3.18 実験データによるΔE分布へのフィットの結果 55
3.19 モンテカルロシミュレーションによる主な崩壊モードごとに分類したM(K±π⁰)の不変質量分布 57
3.20 ψ′モンテカルロシミュレーションによるB⁺ ± → ψ′K⁺± (K⁺± → K±π⁰)のシグナル MCで終状態の粒子を全て正しく選んだ場合のM(K±π⁰)へのフィット 57
3.21 実験データによるM(K±π⁰)へのフィットの結果 58
はじめに

クォークは強い相互作用をもってハドロンと総称される粒子を形成する。その中でも、クォーク3つ（qqq）を構成子とするバリオンと、クォーク・反クォーク（q̅q）を構成子とするメソンと呼ばれる粒子に分類され、それ以外の構造をもつハドロンをエキゾチックハドロンと呼ぶ。例えばクォーク・反クォーク各々2つずつの4体で構成されるハドロンのテトラクォークなどが含まれる。

強い相互作用を表の理論として記述するQCD(Quantum Chromodynamics)は、エキゾチックハドロンの存在を禁じてはいない。それにかかわらず、その候補の報告は、QCDが提唱された1970年代から2000年代に至るまで、明らかなものが無かった。

2000年代に入り、加速器の高速化により大きく進展したBファクトリーフ実験からエキゾチックハドロン候補の報告が相次いだ。その中で最も特徴的なものは、電荷を持ちc̅eを含む粒子Z(4430)⁺⁻の発見である。これはB中間子がψ'中間子、荷電π中間子、荷電K中間子に三体崩壊するとき、ψ'π⁺⁻系の不安質量分布の中に発見された。

Z(4430)⁺⁻は、構成子として、c̅eudの少なくとも4体のクォークを含むと考えなくては、その性質を説明できない。これまでの種々のハドロンを構成子とするクォークの種類とその結合状態の違いとして分類し、かつそれらの性質の予測を行ってきたクォークモデルの観点から考えると、u̅dをu̅uまたはd̅dに置き換えて中性となったZ(4430)⁰と呼ぶべきパートナー粒子の存在を想定するのは自然である。またその探索には、B中間子がψ'中間子、中性π中間子、荷電K中間子の三体崩壊を検出し、ψ'π⁺⁰系の構造を議論すればよい。

ψ'中間子を電子またはμ粒子対と光子対から再構成する研究は、昨年度に石塚の修士学位論文にまとめられているが、本研究ではψ'中間子のもう一つの重要な崩壊モードであるψ'→J/ψπ⁺⁻π⁻の再構成を行った。それに基づき、B⁺⁻→ψ'π⁺⁻K⁺⁻過程の信号抽出を行うとともに、その中に既知のB中間子崩壊過程であるB⁺⁻→ψ'K⁺⁺(892)⁺⁻が占める寄与について、2000年から2004年の間にBelle検出器が収集した2.77×10⁸B中間子対生成事象のデータを用いて調べた結果について報告する。

以下、第1章ではエキゾチックハドロン研究について、第2章では、KEKB加速器およびBelle検出器について述べる。第3章では、B⁺⁻→ψ'π⁺⁻K⁺⁺事象の再構成、B⁺⁻→ψ'K⁺⁺(892)⁺⁻の崩壊分岐比を算出した手順と結果について述べ、第4章で全体をまとめめる。
第1章 中間子崩壊におけるエキゾチックハドロン研究

1.1 クォークモデルとハドロン

物質を形成している最も基本的な構成要素は、6 種類のクォークと6 種類のレプトンである。これらはスピン1/2のフェルミオンであり、ともにウィークアイソスピン2重項-一つを1世代として全部で3世代の存在が確認されており、ゲージ粒子を交換することで相互作用する。クォークとレプトンの違いの1つは、強い相互作用に関わるか否かである。強い相互作用をするクォークは、単体では存在できず、強い相互作用によってハドロンと総称される複合粒子を形成する。ハドロンは、クォーク3つで構成されるバリオンと、クォーク・反クォークで構成されるメソンに分けられる。(図 1.1)

![図 1.1: ハドロン](image)

クォークモデルは、これまでに存在が確認されたハドロンの性質について、バリオンまたはメソンとして説明することに成功してきた。ここで u, d, s といった軽いクォークを構成要素としている場合には、SU(3) フレーバー対称性のため、特に中性メソンでは混合効果が顕著である。一方、c, b といった重いクォークの場合はその大きな質量のため、物理的に観測される状態と構成子クォークの関係がより直接的である。特に c クォークと反c クォーク (\bar{c} クォーク) の束縛状態であるチャーモニウムは、こうした重いクォークの特性がよく現れるハドロンである。そこで、次節ではチャーモニウムについてさらに詳しく述べる。
1.2 チャーモニウム

前述したように、チャーモクォーク（c）と反チャーモクォーク（\(\bar{c}\)）で構成される電的に中性なメソッドをチャーモニウム（c\(\bar{c}\)）と呼ぶ。c は u, d, s に比べクォーク自体の質量が大きく、これがカットオフとなって、ポテンシャルモデルによる質量の予言が比較的、よい近似を与える。そのため、チャーモニウムの研究はハドロンを形成する際の量子色力学（QCD）を理解する上で有用な情報を与えると期待される。

図 1.2 にチャーモニウムの質量スペクトル図を示す。各々の状態の表記には式 (1.1) の定義を用いた。

\[n^{2S+1}L_J \]

(1.1)

\(n \) : 動径量子数
\(S \) : チャーモニウムのスピン
\(L \) : 軌道角運動量 \((S,P,D \cdots)\)

さらに、種々のチャーモニウムの性質を特徴づける量子数 J, P, C は以下のよう与えられる。

\(J : S + L \)
\(P : パリティ (-1)^{L+1} \)
\(C : 荷電共役 (-1)^{L+S} \)

チャーモニウムのうち最も有名なのは \(J/\psi \) 中間子である。\(J/\psi \) 中間子はスピン 1, 軌道角運動量 1S の束縛状態で、1974 年、サム・テイン率いる MIT を中心としたグループとパートン・リヒター率いる SLAC を中心としたグループにより同時に発見された。この発見はチャーモクォークの存在を確立して、11 月革命と呼ばれ、その後新たな共鳴状態のチャーモニウムの発見が相次いだ。その中の 1 つは \(\psi' \) 中間子である。\(\psi' \) 中間子は、スピン 1, 軌道角運動量 2S の束縛状態であり、質量 3686MeV/c^2 をもつ。これらの様々なチャーモニウムは、質量が \(DD \) 関値より大きいか小さいかによって崩壊の性質が大きく異なる。ここで、\(DD \) 関値とは D 中間子 (c\(\bar{d}\)) もしくは d\(\bar{c}\)・反 D 中間子対への崩壊の関値 (3740MeV/c^2) である。質量が \(DD \) 関値よりも小さいチャーモニウムは、より低いエネルギー準位の粒子に遷移するか、弱い相互作用または電弱相互作用によって崩壊するため崩壊幅が狭い。これら \(DD \) 関値以下のチャーモニウムについては質量、崩壊幅、崩壊モード等の性質が測定されており、その結果は QCD の理論によく合致している。一方、質量が \(DD \) 関値より大きいチャーモニウムは、強い相互作用による D 中間子・反 D 中間子対への崩壊が支配的となり、崩壊幅が広くなる。典型的なのは \(\psi(3770) \) である。一方で実験的には確認されていない状態も多く、未知の部分が残されている。21世紀に入り、B ファクトリー実験が開始されてから、こうした従来の常識に当てはまらないハドロンの発見が相次いだ。このことについて次節に述べる。
1.3 $c\bar{c}$を含むエキゾチックハドロンの発見

チャーモニウムをはじめ、$c\bar{c}$を含むハドロンの生成源として、B中間子の崩壊は有用な過程の1つである。なぜなら、図1.3に示すように弱い相互作用の最低次の$b\rightarrow c\bar{c}s$遷移で崩壊して、$c\bar{c}$を生成するためである。この弱い相互作用ではV_{cb}およびV_{cs}とカビク抑制のない結合が寄与しているので、崩壊分岐比が比較的高い。したがって、大量のB中間子データは豊富な$c\bar{c}$を含むハドロンとK(またはK^*)中間子への崩壊事象データサンプルと言える。

1.1で述べたように、通常ハドロンはクォーク3個を構成子とするバリオン、もしくはクォーク・反クォークを構成子とするメソングのどちらかである。それ以外の構造をもつハドロンを総称してエキゾチックハドロンと呼ぶ。例として、クォークをq、反クォークを\bar{q}と表し、構成子が$qqq\bar{q}$であるテトラクォーク、$qqqq$であるペンタクォーク等が挙げられる。QCD自体には、これらの構成子クォーク配位を抑制する禁止則が見つからなかったため、エキゾチックハドロンはQCDの黎明期から盛んに探索されたが、長い間それらしい粒子は発見されなかった。

ところが2003年以降、大量のB中間子データの中から、$c\bar{c}$を含んでいるにも関わらず、従来のチャーモニウムの常識と大きく異なる性質を持っているハドロンの発見が相次いだ。これらの粒子について、テトラクォークあるいは2つのメソングがpメソング交換により結合したメソング-メソング分子であ
図1.3: B中間子からチャーモニウムへの崩壊のファインマンダイアグラム

可能性が議論されている。そこで、本研究の動機の源流とも言える代表的な2つの粒子について述べる。

1.3.1 X(3872)

X(3872)は2003年にBELLE実験において$B \rightarrow J/\psi \pi^+ \pi^- K$崩壊過程で発見された[1]。$B \rightarrow J/\psi \pi^+ \pi^- K$候補事象において、$\pi^+ \pi^- l^+ l^-$の不変質量$M_{\pi^+ \pi^- l^+ l^-}$と$l^+ l^-$の不変質量$M_{l^+ l^-}$の質量差をえたものを図(1.4)に示す。$\psi'$とは異なる3872MeV/c²の質量に$J/\psi \pi^+ \pi^-$に崩壊する狭い共鳴状態が存在することが確認できる。その後、X(3872)はBaBar, CDF, LHCbの各実験においても存在が確認された。崩壊の実状態にJ/ψが現れていることから、X(3872)が$c\bar{c}$含む粒子であることは確かである。X(3872)の質量は3872MeV/c²でDD関数よりも大きいが、DDへの崩壊が支配的でなく崩壊幅が狭い。これは前節で述べた従来のチャーモニウムの性質とは大きく異なる。

現在のところ$X(3872) \rightarrow J/\psi \gamma$なる幅射崩壊が確認されているので、荷電共役$C=+1$であることは確定しており、$J^{PC}=1^{++}$もしくは$2^{--}$である可能性が高いと考えられているが、X(3872)を未発見のチャーモニウムの一つの状態とする説明は、予想された質量で一致するものでないので、成功していない。一方で、質量3872MeV/c²がD^0とD^{*0}の質量の和に非常に近いということから、D^0中間子とD^{*0}中間子が緩やかに結合した状態（中間子分子）と考える模型も一定の支持を得ている。ただし、束縛エネルギーが非常に小さいため、5μm程度の大きさに広がっていると見込む可能性もあるため、J/ψを含む崩壊モードの分岐比やテバトン加速器での生成断面積を説明するのが難しく、決定的な解釈になっていない。

このように、X(3872)について全ての性質を説明できるモデルはまだ存在しない。X(3872)は電荷を持たないため、未発見のチャーモニウムの可能性が残されている一方、構成子としてクォーク2個と反クォーク2個の計4個（$c\bar{c}u\bar{u}$あるいは$c\bar{c}d\bar{d}$）を含むテトラクォークなる状態である可能性もある。そのような状況下、2007年に電荷を持ち、$c\bar{c}$を含む粒子$Z(4430)^\pm$が発見され、エキゾチックハドロンの存在を確定的に行なった。次節ではこの$Z(4430)^\pm$について述べる。
1.3.2 $Z(4430)^\pm$

$Z(4430)^\pm$粒子は2007年にBelle実験により$B \to \psi' \pi^\pm K$崩壊過程で発見された[2]。$B \to \psi' \pi^\pm K$ 事象におけるψ'中間子とπ^+中間子の不変質量分布を図(1.5)、$B \to \psi' \pi^\pm K^-$、$B \to \psi' \pi^+ K_s^0$ 崩壊事象を用いた$M^2(K^- \pi^+) - M^2(\pi^+ \psi')^2$2次元分布（ダリッツ分布）を図(1.6)に示す[3]。図(1.5)を見ると、明瞭なピークが質量4430MeV/c^2の位置に確認できる。これに対応して図(1.6)において、$M^2(\pi^+ \psi') \sim 20$GeV^2/c^4付近((4.43)^2=19.62GeV^2/c^4)に事象の集中が見られる。一方で、BaBarでも同様に$B^-(B^0) \to J/\psi \pi^- K^0(K^+)$、$B^- (B^0) \to \psi' \pi^- K^0 (K^-)$過程を用いた測定が行われた[5]。そこで有意なシグナルは見られず、上限値が報告されている。ただしBaBarが使用したデータ量はBelleの70％であり、統計的にBelleの結果と矛盾していないと結論付けられている。

ψ'中間子と荷電π中間子へ崩壊していることから、$Z(4430)^\pm$はccを含み、なおかつ電荷1をもつ粒子である。この性質は、クオーク-反クオークの二体を構成子とする通常のメソンとしては説明できない。つまりテトラクオークや中間子分子など、少なくとも$cc\bar{u}\bar{d}$の4つを構成子とするエキゾチックな粒子のいずれかであると考えられる。

すると、$Z(4430)^\pm$の構成子クオークを変えて中性となったパートナー粒子が存在する可能性も考えられる。この中性パートナー粒子が存在する場合、$B \to \psi' \pi^0 K$過程が最適と考えられる。$B \to \psi' \pi^0 K$過程を用いて$\psi' \pi^0$に崩壊する共鳴粒子の有無を議論するには、様々な擬二体崩壊および共鳴を通じて得られない三体崩壊の寄与が重なり合ったものをダリッツ平面上の波動関数として取扱うダリッツ解析法の適用が必要となる。ダリッツ解析法の実行は博士院論文レベルの研究であり、その準備研究として、
図 1.5: Z(4430)⁺⁻ 粒子を示す実験データ [2]

: $B \rightarrow \psi'\pi^+K$ 過程における ψ' 中間子と π^+ 中間子の不変質量分布。青色のヒストグラムは $B \rightarrow \psi'\pi^+K$ 崩壊以外のバックグラウンド期待値を示す。

本研究ではシミュレーションデータを用いて $\psi'\pi^0$ 不変質量が実験的に十分な精度で再構成可能なことを示す。また、Belle 実験が蓄積した $2.77 \times 10^8 B$ 中間子対生成事象のデータを用いて $B^\pm \rightarrow \psi'\pi^0K^\pm$ 過程の信号抽出を行い、その中で既知の B 中間子崩壊過程である $B^\pm \rightarrow \psi'K^*(892)^\pm$ が占める寄与について調べた。
図 1.6: $M^2(K^-\pi^+) - M^2(\pi^+\psi')$2 次元分布 (ダリッツ分布)

$B \to \psi'\pi^0K$ 過程における 2 次元分布。$|\Delta E| < 34\text{MeV}$ に含まれる事象を選んだ。青:
(a) $B \to \psi'K^*(892)$ による寄与 (b) $B \to \psi'K^*(1430)$ による寄与、赤: $Z(4430)$ と思われる事象。
第2章 実験装置

2.1 KEKB 加速器

KEKB 加速器は、茨城県つくば市の高エネルギー加速器研究機構（KEK）に建設された、2 リング型の電子・陽電子衝突型加速器である。トンネル内に設置した周長 3km の 2 つのリングで、電子を 8GeV、陽電子を 3.5GeV のそれぞれ異なるエネルギーで蓄積、周回させ、リングが交差する場所（IR）で衝突させる。電子・陽電子の重心系エネルギーは 10.58GeV とし、衝突後、b と ̅b フォークの 4 番目の共有状態である Υ(4S) を効率的に生成する。Υ(4S) は、ほぼ 100 % の割合で B 中間子・反 B 中間子に対崩壊する。そのため大量の B 中間子を得ることに適しており、B ファクトリーと呼ばれる。1998 年からビーム衝突のコミッショニングを始め、2010 年 6 月にその運転を完了した。現在は高度化して 40 倍のルミノシティを実現するための改良工事が進行中である。

この加速器の特徴は、

- 電子と陽電子を異なるエネルギー（非対称エネルギー）で衝突させる点
- 高いルミノシティをもつ点

である。これらは、KEKB 加速器が B 中間子崩壊における CP 対称性の破れを観測する目的で建設されたことと関連する。以下、それぞれの特徴について詳しく述べる。

2.1.1 非対称エネルギー

CP 対称性の破れは、間接的 CP 対称性の破れと直接的 CP 対称性の破れの 2 種類がある。そのうち B 中間子系における CP 対称性の破れでは、間接的 CP 対称性の破れを測定することが小林・益川理論を検証する上で重要である。これは中性 B 中間子が CP 固有状態に崩壊する際に、他方の B 中間子系の崩壊時刻の差 (Δt) の分布が B0 と ̅B0 で異なる現象として現れるものである。そのため、間接的 CP 対称性の破れについて調べるためには、B 中間子系の時間発展を測定せねばならない。しかし B 中間子の寿命は約 1.6psec と非常に短く、Δt を直接測ることはできない。そこで崩壊点を再構成して飛行距離を測定することにより、Δt を得る。

ところが B 中間子の質量は 5.28GeV であるため、B と ̅B の質量の差と Υ(4S) の質量 10.58GeV を比較すると、その差はわずか 20MeV である。電子・陽電子を対称なエネルギーで衝突させた場合、生
成される B 中間子はほとんど静止しており、崩壊するまでに約 20µm しか飛行しない。このような条件下で崩壊点の位置を測定して、Δt を十分な分解能で得ることは非常に困難である。

よって、前述の非対称エネルギーで電子・陽電子を衝突させると、実験室系において $\Upsilon(4S)$ はビーム軸に沿って $\beta\gamma=0.425$ でローレンツブーストされる。この結果、B 中間子は運動量を得るとともに、相対論的効果で寿命が延び、崩壊するまでの平均の飛行距離が約 200µm に延びる。これによって、2 つの B 中間子の崩壊位置の違いから時刻 Δt を間接的 CP 対称性の破れを測定するのに十分な分解能で測定することが可能になる。

2.1.2 高いルミノシティ

ルミノシティ L とは、ビーム強度を表す指標であり、断面積 σ をもつ反応の発生頻度 R との間に $R=\mathcal{L}\sigma$ の関係がある。B 中間子は他の中間子に比べて重いことから多様な崩壊モードが存在し、CP 対称性の破れの測定に使用可能な崩壊過程は $10^{-4} \sim 10^{-6}$ 程度の崩壊分岐比しかない。したがって CP 対称性の破れを統計的に有意に測定するためには、年間およそ 10 個の BB 対が必要になる。$\Upsilon(4S)$ の生成面積は 1.1nb($1b=10^{-24}cm^2$) なので、必要とされる年間積分ルミノシティは $10^{41}cm^{-2}(=100fb^{-1})$ となる。このため、KEKB 加速器は $10^{44}cm^{-2}s^{-1}$ なる高いルミノシティを達成することを目指に設計された。

ここで、衝突型加速器におけるルミノシティ L は次式 (2.1) で与えられる。

$$L = 2.2 \times 10^{44} \xi(1 + r)(\frac{E \cdot I}{\beta_y^*}) \pm \text{(2.1)}$$

E：ビームエネルギー (GeV)
I：蓄積電流 (A)
ξ：ビームビームパラメーター (衝突時に働くビーム・ビーム力の強さを表す量)
r：衝突点における垂直方向のビームサイズを水平方向のビームサイズで割った量
β_y^*：衝突点で垂直方向にどれだけビームを絞るかを表す量 (cm)

$-$は電子、+$+$は陽電子の場合である。電子・陽電子リングの場合、ビームの断面は非常に扁平なので、r は小さく無視することができる。よって、高いルミノシティを得るためには、1 を大きくし、β を小さくしなくてはならない。KEKB 加速器の設計値では $\xi = 0.05, \beta_y^* = 1cm$ まで小さくして、電子リングで 1.1A、陽電子リングで 2.6A という大電流を蓄積することによって目標ルミノシティを達成することとした。

上式 (2.1) より、E と I の積は電子リングと陽電子リングで等しくすると高いルミノシティを得る上で適切であることから、エネルギーが低い陽電子リングの電流は電子リングに比べて大きくなる。電子・陽電子はリングの中を数千個ずつのバンチと呼ばれる集団となって周回する。1 つのバンチが担える電流は数 mA なので、大きなビーム電流を蓄積するためには、電流を多数個のバンチに分散させる必要がある。

KEKB 加速器では、電子と陽電子のバンチを $\pm 11\text{mrad}$ の角度で衝突させる有限角度衝突を採用した。交差角ゼロの正面衝突の場合、異なるリングを走っている電子と陽電子を同一軌道にのせて衝突
させ、再び異なるリングに分離しなければならない。これに対して有限角度衝突の場合は、衝突点近くに分離させるための偏向磁石をおく必要がなく、バンチの間隔を短縮できる。また、偏向磁石から発生する放射光によるバックグラウンドの影響を受けずに済むという利点もある。

KEKB加速器のこれまでの運転実績では、クラプ空洞の導入により\(\in\)を0.09まで上げ、各リングに約1400個のバンチを蓄積することにより、1.66A(陽電子)、1.34A(電子)のビーム電流値を得て、2009年6月にビーグルミノシティ2.11 \(\times 10^{34} \text{cm}^{-2}\text{s}^{-1} \)を達成するとともに、同年12月には積分ルミノシティが1ab\(^{-1}\)に達した。このうち\(B \)中間子の崩壊過程の研究に使用する\(\Upsilon(4S) \)に重心系エネルギーを設定して、収集したデータは711fb\(^{-1}\)であった。
<table>
<thead>
<tr>
<th>環</th>
<th>LER</th>
<th>HER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ビームエネルギー ((e^+e^-))</td>
<td>3.5GeV</td>
<td>8.0GeV</td>
</tr>
<tr>
<td>周長</td>
<td>3016.26km</td>
<td></td>
</tr>
<tr>
<td>ルミノシティ</td>
<td>(1 \times 10^{34})cm(^{-2})s(^{-1})</td>
<td></td>
</tr>
<tr>
<td>ビーム交差角</td>
<td>(\pm 11)mrad</td>
<td></td>
</tr>
<tr>
<td>ビームビームパラメーター</td>
<td>0.039/0.052</td>
<td></td>
</tr>
<tr>
<td>Beta function at IP((\beta^_x/\beta^_y))</td>
<td>0.33/0.01m</td>
<td></td>
</tr>
<tr>
<td>ビーム電流 ((e^+e^-))</td>
<td>2.6A</td>
<td>1.1A</td>
</tr>
<tr>
<td>パンチ間隔</td>
<td>0.59m</td>
<td></td>
</tr>
<tr>
<td>パンチの数</td>
<td>5000</td>
<td></td>
</tr>
</tbody>
</table>

表 2.1: KEKB 加速器：各パラメータの設計値

<table>
<thead>
<tr>
<th>環</th>
<th>LER</th>
<th>HER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ビームエネルギー ((e^+e^-))</td>
<td>3.5GeV</td>
<td>8.0GeV</td>
</tr>
<tr>
<td>ルミノシティ</td>
<td>(2.1 \times 10^{34})cm(^{-2})s(^{-1})</td>
<td></td>
</tr>
<tr>
<td>ビームパラメーター</td>
<td>0.127/0.129*</td>
<td>0.102/0.090*</td>
</tr>
<tr>
<td>Beta function at IP((\beta^_x/\beta^_y))</td>
<td>1.2/0.0059m</td>
<td></td>
</tr>
<tr>
<td>ビーム電流 ((e^+e^-))</td>
<td>1.66A</td>
<td>1.34A</td>
</tr>
<tr>
<td>パンチ間隔</td>
<td>0.65m</td>
<td></td>
</tr>
<tr>
<td>パンチの数</td>
<td>1585</td>
<td></td>
</tr>
</tbody>
</table>

表 2.2: KEKB 加速器：運転時の各パラメータの値、*2009/6/17 時点の値
図 2.1: KEKB 加速器の概略図
2.2 Belle検出器

電子・陽電子衝突で生成されるB中間子対は、すぐに軽い粒子と崩壊し、最終的に荷電粒子\((e^\pm, \mu^\pm, K^\pm, \pi^\pm, p, \bar{p})\)と光子が検出器に信号を残す。Belle検出器は、これらの粒子を検出するために衝突点を囲んで設置された大型大立体角の検出器である。B中間子崩壊におけるCP対称性の破れを観測するために、検出器は以下のよう性能が要求される。

- B中間子の崩壊点を十分な精度 \((\leq 100\mu m)\)で測定できる
- \(\pi^\pm, K^\pm, p, e^\pm, \mu^\pm\)といった多数に及び終状態中の荷電粒子を正しく識別する能力を持つ
- 光子を伴うB中間子崩壊を測定するために、良好なエネルギー分解能と位置分解能を持つカロリメーターを備える
- 効率よく興味のある事象を選択して取りこむトリガーと、高速のデータ収集システムを持つ

Belle検出器はこれらの要求を満たすように設計・建設された。その概念図を図 (2.2) に示す。非対称エネルギー衝突のため、エネルギーの高い電子ビームの進行方向に大きな立体角を持つように、非対称に検出器を設置している。また、それぞれ違った役割をもつ複数の検出器を組み合わせることにより、先に述べた要求性能を実現するようになっている。表 (2.3) に各検出器サブシステムの主な役割を示す。物理解析では、各検出器からの情報を組み合わせることでB中間子崩壊を再構成する。

<table>
<thead>
<tr>
<th>検出器サブシステム</th>
<th>役割</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFC(超前後方カロリメーター)</td>
<td>ルミノシティのモニター</td>
</tr>
<tr>
<td>SVD(粒子崩壊点検出器)</td>
<td>B中間子の崩壊点測定</td>
</tr>
<tr>
<td>CDC(中央飛跡検出器)</td>
<td>荷電粒子の運動量測定</td>
</tr>
<tr>
<td>ACC(エアロジェルチェレンコフカウンター)</td>
<td>(K/\pi)粒子識別</td>
</tr>
<tr>
<td>TOF(飛行時間測定器)</td>
<td>(K/\pi)粒子識別</td>
</tr>
<tr>
<td>ECL(CsI電磁カロリメーター)</td>
<td>光子の検出とエネルギー測定</td>
</tr>
<tr>
<td>ソレノイド (超伝導コイル)</td>
<td>1.5Teslaの磁場生成</td>
</tr>
<tr>
<td>KLM((K^0_S)及び(\mu)粒子検出器)</td>
<td>(K^0_S)粒子と(\mu)粒子の検出</td>
</tr>
</tbody>
</table>

表2.3: 各検出器とその役割

2.2.1 粒子崩壊点検出器 (SVD)

SVD(Sillicon Vertex Detector)は、時間に依存したCP非保存の測定に不可欠なB中間子の崩壊点検出を行う。また、次に述べる中央飛跡検出器の情報と併せて、運動量が低い荷電粒子の飛跡測定にも用いられる。図 (2.3) にSVDの断面図 (endview) と側面図 (sideview) を示す。
図 2.2: Belle 場出器の全体図

SVD は、短冊形の両面シリコンストリップ検出器 (DSSD) を必要な枚数を組み立てて出来ている。シリコンストリップ検出器とは、7cm×4cm、厚さ 300μm の n− シリコンパックの両側に幅 6μm の n+, p+ 半導体を互いに直行するように配置したものである。片面で φ 方向、もう片面で z 軸方向の位置を測定する。この上下の面に逆バイアス電圧をかけ、荷電粒子が通過した際に生成する電子とホール対を各電極に集めて信号を読み出し、位置の測定を行う。この DSSD を複数個つないでラダー構造とし、ビームラインを中心に隙間なく円筒状に配置している。各層で検出された粒子の位置を組み合わせ、衝突点付近まで内挿することにより B 中間子の崩壊点測定を行う。崩壊点の位置分解能は約 100μm である。

本研究で使用したデータのうち2003 年までの実験に用いられた SVD1 は 3 層構造をしており、それぞれの層はビーム軸からの半径が 3.0cm, 4.5cm, 6.0cm の位置にある。SVD1 が覆う領域は、実験室系において、ビーム軸との角度 23° < θ < 139° であり、これは全立体角の 86 % に対応する。2003 年夏以降の実験では、4 層構造の SVD2 にアップグレードされた。それぞれの層はビーム軸からの半径が 2cm, 4.35cm, 7cm, 8.8cm の位置にある。実験室系において、ビーム軸との角度 17° < θ < 150° をカバーし、全立体角の 92 % に対応している。

位置分解能を向上させるため、検出器の構造上の工夫として、最も内側の層は可能な限り衝突点に近づけ、検出器全体をビームパイプとして一体となるように組み立てて設計になっている。また、多重散乱を抑えるために検出部の物質量を小さくし、読み出しのエレクトロニクスは検出器有感領域の外側に置いている。さらに、SVD は衝突点の最も近くに配置され、ビームバックグラウンドを多く受けるため、放射線に対して十分な耐性がなければならしない。SVD2 は、シリコンストリップセンサーの初段エレクトロニクスに用いられる半導体部品の放射線耐性向上、およびビームバックグラウンドを遮蔽するマスクシステムの改善により、2003 年夏の据え付け以来、2010 年 6 月に実験を完了するまで無交換で稼働をした。
2.2.2 中央飛跡検出器 (CDC)

CDC(Central Drift Chamber) は、荷電粒子の識別およびエネルギー損失 \(dE/dx\) の測定を行う多線式のドリフトチェンバーである。1.5Tesla の磁場中に設置され、He(50 %) : \(C_2H_6\) (50 %) の混合ガス中に多数の電極ワイヤーが張られている。荷電粒子が CDC 内を通過すると、ガスの分子がイオン化し、電子が生じる。このとき発生した電子は電場によって陽極ワイヤーまで移動（ドリフト）し、ドリフトする時間から荷電粒子の通過した位置を知ることができる。また、荷電粒子が磁場中を運動する際、ローレンツ力を受けて運動量に応じた螺旋を描く。この飛跡を各々のワイヤーから得た通過位置から再構成し、曲率半径と磁場の大きさから荷電粒子の運動量を測定する。飛跡の xy 平面上での曲率半径を \(R[\text{m}]\) とすると、荷電粒子の横方向運動量 \(P_t[\text{GeV}/c]\) は次式 (2.2) で求められる。

\[
P_t[\text{GeV}/c] = 0.3B[T]R[\text{m}]
\]

運動量の \(z\) 成分は \(z\) 軸に対する傾きから得られる。ワイヤー 1 本の xy 平面内の位置分解能は 130m、運動量 \(P_t[\text{GeV}/c]\) の分解能 \(\sigma_{P_t}\) は 0.5\(\sqrt{P_t^2 + 1}\%\)である。

さらに、ワイヤー近傍の高電場で電子寄りのガスの分極及び荷電粒子のグリップの電離損失 \(dE/dx\) を測定できる。\(dE/dx\) は、運動量が同じであっても荷電粒子の種類によって値が異なり、粒子識別を行うことができる。\(dE/dx\) の分解能は 6.0 %である。

CDC の構造図図 (2.4) に示す。外半径 88cm、内半径 7.7cm、長さ 23.5cm の円筒形で、SVD と同じ 17° < \(\theta\) < 150° の領域をカバーしている。また、電子ビームと陽電子ビームのエネルギーが異なる点を考慮して、\(z\) 軸に非対称形になっている。内部のシェッパードは 50 層のアノードワイヤーと 3 層のフィールドワイヤーで構成され、陽極 (アノードワイヤー) には直径 30m の金メッキタングステン製ワイヤー、陰極 (フィールドワイヤー) には直径 120m のアルミニウム合金製ワイヤーが使用され
図 2.4: CDC の断面図

ている。1 本のアノードワイヤーを 8 本のフィールドワイヤーで取り囲むように配置されており、ワイヤーの総本数は CDC 全体で 3 万本に及ぶ。荷電粒子の多重散乱による運動量分解能悪化を最小にするために、ガス・ワイヤーともに物質量の小さいものを使用している。

2.2.3 エアロジェルチャレンコフカウンター (ACC)

ACC (Aerogel Cherenkov Counter) は、広い運動量領域 (1.2～3.5GeV/c) において K 中間子と π 中間子の識別を行う目的として開発型チャレンコフカウンターである。質量 m の粒子が屈折率 n の物質中を速度 v で通過する場合、下式 (2.3) を満たしたときチェレンコフ光を放射する。

\[n > \frac{1}{\beta} = \sqrt{1 + (\frac{m}{p})^2} \]

\[\beta = \frac{v}{c} \]

(2.3)

K 中間子と π 中間子が同じ運動量で幅射体を通過しても、質量の違いにより、π 中間子のみがチェレンコフ光を放射する運動量領域が存在する。これを利用し K/π 識別を行う。

Belle 検出器では 0.5～4.0GeV/c の運動量領域で粒子識別が必要であり、これは屈折率 1.001～1.03 の物質を用いることに対応する。この条件をもつ幅射体として KEK で開発されたのがシリカエアロジェルである。固体でありながら気体に近い屈折率をもつ、屈折率の微調整が広範囲 (1.006～1.07) で可能という特徴がある。Belle 検出器では屈折率 n=1.01～1.03 のエアロジェルを使用し、ファインメシュー型光電子増倍管でチェレンコフ光を検出する。また、図 (2.5) のように θ によって異なる屈折率のエアロジェルを使用する。なぜなら、非対称エネルギーのビーム衝突で発生する粒子の運動量の大き
さはx軸方向からの角度 θ に依存している。よって、それに対応して高精度の K/π 識別を実現するためである。

图 2.5: ACC

ACC のパレル領域は ϕ 方向に 60 セルに分離された 960 個のカウンターモジュール、エンドキャップ領域は 5 層の同心円状に配列された 228 個のカウンターモジュールから構成される。全てのカウンターモジュールは衝突点の方向に向けて配列され、ACC 全体で $17^{\circ} \leq \theta \leq 127.2^{\circ}$ の領域をカバーしている。

ACC のカウンターモジュールを図 (2.6) に示す。5 枚のエアロジェルのタイルが板厚 0.2mm のアルミニウム製の箱の中に積み重ねられている。箱の大きさは約 $12 \times 12 \times 12$cm3 である。チェレンコフ光を効率的に検出するために、1 つまたは 2 つのファインメッシュ型光電子増倍管 (FM-PMT) をエアロジェルに直接取り付けている。この FM-PMT は 1.5Tesla の磁場中でもフォトカウンティング能力を持つ。
a) Barrel ACC Module

b) Endcap ACC Module

図 2.6: ACC のカウンターモジュール
2.2.4 飛行時間測定器（TOF）

TOF（Time of Flight Counter）は、衝突点からの飛行時間を測定することによって K/π 中間子の識別を行うことを主な目的としたプラスチックシンチレーションカウンターである。粒子の種類が異なると、同じ運動量をもつ粒子であっても速さが異なり、飛行時間の差となって現れる。これを用いて荷電粒子の識別ができる。TOF の荷電粒子識別は 1.2GeV/c 以下の運動量領域で有効である。また、CDCと組み合わせて荷電粒子を識別することで、事象が発生した時期を得るためのトリガー信号を発する役割も担っている。

TOF システムは 128 個の TOF カウンターと 64 個の TSC（トリガーシンチレーター）から構成されている。台形の TOF カウンター 2 個と TSC1 個で 1 つのモジュールをつくる。衝突点から 1.2cm の位置にある計 64 個の TOF/TSC モジュールで $34^\circ < \theta < 120^\circ$ の範囲を覆う。これらのモジュールは ECL の内壁に取りついている。TOF と TSC の間には 1.5cm の間隔が設けられている。これは、ビームに起因するバックグラウンド中の光子が TSC 中で電子・陽電子対生成を起こしても、1.5Tesla の磁場によって軌道を小さく旋回させ、発光した電子・陽電子が TOF に届かないようにするためである。

粒子の飛行時間 T_{TOF}、飛行時間 L_{path} には以下の関係がある。

$$\beta = \frac{L_{path}}{c \cdot T_{TOF}} = \frac{p}{E} = \frac{p}{\sqrt{m^2 + p^2}}$$

$$(2.4)$$

$$T_{TOF} = \frac{L_{path}}{c} \sqrt{1 + \left(\frac{m^2}{p^2}\right)}$$

$$(2.5)$$

ここで、E, p, m はそれぞれ粒子のエネルギー、運動量、質量である。CDCで測定された運動量を用いれば、上式 (2.4)から粒子の質量が計算でき、種類を固定できる。飛行距離 1.2m、時間分解能 100psecであれば、1.2GeV/c 以下の粒子識別が可能である。これは $\Upsilon(4S)$ 崩壊で生成される粒子の 90% にあたる。

分解能 100psec を実現するために、シンチレーション光の減衰長が 2m と十分長く、発光の立ち上がりが速いシンチレーターを使用している。また、カウンター内で伝搬するシンチレーションの時間的分散を最小限にするために、ライトガイドを使用せずに大面積のフォトカソードをもつファインメッシュ型電子増倍管をシンチレーターに直接取付いている。これらの工夫の結果、$e^+ + e^- \rightarrow \mu^+ + \mu^-$ 事象を用いて観測された時間分解能は粒子の入射位置の z 座標にほとんど依存せず、約 100psec を達成している。

さらに TOF は、後述する QtoT(charged to time) 変換に必要なゲート信号をつくり、かつ数値化を担う TDC のストップ信号を生成するという役割を担う。トリガー信号の重複を防ぐため、TOF トリガー信号の頻度は 70kHz 未満に保たなければならないが、ECL 用のゲートと CDC 用のストップ信号は 10nsec の精度を必要とする。これまでに、これらの条件を満たしつつ B 中間子対生成を含むハドロン事象に対してほぼ 100% のトリガー効率を実現してきた。
2.2.5 電磁カロリメーター (ECL)

ECL (Electromagnetic Calorimeter) は、電子 (陽電子) と光子のエネルギーと入射位置を測定する検出器である。高エネルギーの電子や光子がカロリメーターに入射すると、制動放射や電子対生成によって電磁シャワーを形成する。シャワーを形成して失われた粒子にエネルギーは、シンチレーター内で物質中の原子を励起させ、励起状態の原子が脱励起する際に発光する。この光はシンチレーショ
ン光と呼ばれる。物質の厚さが十分であれば、入射した電子や光子のエネルギーのほとんどを物質中で失うため、シンチレーション光を電気信号に変換して読み出し、入射粒子のエネルギーを測定することができる。

CDCで測定した運動量 (p) とECLで測定したエネルギー損失 (E) の比 (E/p) は、電子または陽電子とその他の荷電粒子を識別する上で重要な値である。カロリメーター内で電磁シャワーを形成するのは電子・陽電子のみで、またはほとんどのエネルギーをカロリメーター内で失う。一方、他の荷電粒子はその全てのエネルギーを失うわけではないため、E/pの値は1より小さい。したがって、E/pの値によって高い信頼度で電子・陽電子とその他の荷電粒子を識別することができる。

また、B中間子崩壊過程の約1/3はπ^0を含み、本研究の対象とした崩壊過程にもπ^0が含まれる。
<table>
<thead>
<tr>
<th>粒子</th>
<th>相互作用</th>
<th>エネルギー損失</th>
</tr>
</thead>
<tbody>
<tr>
<td>e,γ</td>
<td>電磁シャワー</td>
<td>〜粒子のエネルギー</td>
</tr>
<tr>
<td>μ</td>
<td>イオン化</td>
<td>〜200MeV</td>
</tr>
<tr>
<td>π,K,p</td>
<td>イオン化とハドロン相互作用</td>
<td>≤200MeV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>〜粒子のエネルギー</td>
</tr>
</tbody>
</table>

表2.4: ECLと粒子の相互関係

π0は2つの光子に崩壊するため、その光子のエネルギーおよび方向を精度良く測定することも非常に重要である。ECLはパレル部分と前方及び後方エンドキャップ部分から構成される。使用されているクリスタル(CsIカウンター)の数は、計8736本、総重量43tに及び、パレル部分は外径3.0m、内径1.25mの円筒状で、前方・後方エンドキャップはそれぞれ衝突点から1.96mと1.02mに位置している。検出領域はビーム軸から17.0°<θ<150.0°の範囲である。各々の結晶はその軸をほぼ衝突点方向に向かって配列されている。衝突点で発生した光子がカウンターとカウンターの境界をすり抜けるのを防ぐための工夫として、パレル領域ではr<3平面上で約1.3°、前方エンドキャップ領域ではθ方向に約1.5°、後方エンドキャップ領域ではθ方向に約4°カウンターを傾けてある。ECLの断面図を図(2.8)に示す。ECLでは良好エネルギー分解能を得るために、シンチレーターとして光量の多いCsI(TI)

結晶を用いている。結晶の形状は長さ30cm、前面(衝突点側)は約5.5×5.5cm²、後面(信号読み出し側)は約6.5×6.5cm²であり、隙間を省略配置するために結晶の位置によって形状を変えていく。結晶の長さは16.2X0(X0:放射長)に対応し、断面の大きさはモリエール半径(3.8cm)を考慮した大きさとなっている。入射粒子のエネルギー損失により発生するシンチレーション光をPINフォトダイオード
図2.9: CsIカウンターの構造

で読みだしている。そのためECLを超伝導ソレノイド内に配置することが可能となり、前方物質の量を減らして光子の検出効率を確保している。また、フォトダイオードにシンチレーション光を効率よく集められるように、結晶の厚さ200μmの白色ゴアテックスシートで包んでいる。さらにその上から25μmのアルミニウムを蒸着したマイラーシートで包み、雑音シールドを施している。結晶後面に接着したフォトダイオードの背後にはアルミニウム製ケーシングに入ったプリアンプを取りつけ、フォトダイオードの信号に雑音が混入する前に増幅する設計になっている。（図2.9）

シャワーは横方向にも広がるため、電子や光子が直接入射したカウンターにとどまらず、その周辺を含めた複数のカウンターにも信号をもたらす。そこで、1つの粒子に起因する信号を一つカウンターの集団を見つけ、エネルギーの総和をとる。まず、隣接するカウンターよりも大きな信号を検出し、かつその値が10MeV以上のもの（シードカウンター）を探す。このシードカウンターを中心に5×5本の範囲に入る計25本のカウンターのうち、0.5MeV以上の信号を検出したカウンターを選ぶ。こうして得られたカウンターの集団をクラスターと呼ぶ。エネルギーの測定は、クラスターに含まれるカウンターが検出したエネルギーの総和をとり、入射位置はクラスター内のエネルギーの重心から決定する。

エネルギーは、入射した粒子の実際のエネルギーよりも若干小さくなる傾向がある。これは、クラスターの範囲外のカウンターかやカウンターの後方にシャワーが漏れ出やすいからである。またカウンターの大きさが有限であるため、測定した入射位置と実際の位置にもずれが生じる。そこで、モンテカルロシミュレーションが電磁シャワーのふるまいをよく再現していることを用いて補正関数を求め、これを適用してシャワーのエネルギーと入射位置を得る。
2.2.6 超伝導ソレノイド

超伝導ソレノイドは TOF と KLM の間に位置し、1.5Tな磁場で検出器中心付近の直径 3.4m、長さ 4m の部分につくう役割をもつ。コイルは Nb・Ti 合金超伝導材を線材として使用し、液体ヘリウム冷却機により −268 ℃まで冷却され超伝導状態になっている。コイル中には 4160A の電流が断面 3×3mm2 の線材に流れている。

2.2.7 KLM 粒子検出器

KLM(KL and Muon Detector) は寿命の長い K0 に中間子と粒子を検出する。KLM は超伝導ソレノイドの外側に位置し、厚さ 4.7cm の鉄プレートと Resistiv Plate Counter (PRC) という検出器が交互に積み重ねられた構造をしており、全体で 14 層をなしている。

K0 中間子は寿命の長い中性粒子であるので、内部の検出器では測定できない。そのため、原子核と強い相互作用をして発生するハドロンシャワーの測定により検出する。KLM では運動量 600MeV/c 以下の K0 が測定可能である。一方で、μ 粒子は高い貫通力をもつため、ある程度高い運動量 (600MeV) ならば内側の検出器を通過し、KLM に達する。dE/dx、TOF、ACC を用いた粒子の質量による粒子同定では、μ 粒子 (105MeV/c^2) と π 中間子 (140MeV/c^2) の同定は不可能である。ここで、KLM での荷電粒子のふるまいに着目すると、π^+、K^+ 等の荷電ハドロンは電磁相互作用に加えて強い相互作用をするので、ほとんどが KLM に達する以前に止まってしまう。一方、μ 粒子は電磁相互作用しか起こさないため、KLM を何層にもわたって貫き信号を残す。この性質から、SVD、CDC で検出した飛跡を KLM へ外挿し、対応する場所に KLM を何層にもわたって貫く飛跡があれば、μ 粒子と識別することができる。現在、運動量 1.5GeV/c の μ 粒子に対する検出効率は 95% 以上である。

2.2.8 トリガーシステム

KEKB 加速器は最高ルミノシティ 2.1 × 10^{34}cm^{-2}s^{-1} を実現している。そのために約 1500 個のパルチを着替しており、レーム交差の頻度は約 150MHz になる。そのうち、BB の生成頻度は 20MHz 程度で、ハドロン事象、μ 粒子や π 粒子の対生成など、物理的興味のある反応の生成頻度は合計で約 200Hz である。さらに、この十数倍の頻度でバックグラウンドを除去しつつ、興味のあるイベントを収集する必要がある。これを実現するのがトリガーシステムである。トリガーには主として、飛跡トリガーとエネルギートリガーがある。飛跡トリガーは、TOF・CDC からの飛跡と時間情報を用い、エネルギートリガーは、ECL で検出された全エネルギーと信号を検出したカウンター群の総数の情報を用いてトリガーを行う。トリガーのタイミングは主として TOF の TSC による信号で決まる。図 (2.10) に Belle で採用されているトリガーシステムのブロックダイヤグラムを示す。

これらの検出器サブシステムが発したトリガー信号は、Grobal Dection Logic(GDL) に送られる。GDL は各検出器サブシステムが発したトリガー信号の情報を総合して 2.2μsec 以内に当該事象のデータ収集を行うか否かを判定する。収集が決定された場合、その後 0.35μsec 以内に各検出器に向けて最終トリガー信号を送る。GDL では最終トリガー信号を発する理論判断にプログラムマップゲートアレイ
図 2.10: Belle トリガーシステム

(FPGA) を用いており、理論判断の条件を柔軟に変更・調整できるようになっている。加速器の運転状況に対応して調整を適したものにすることで、最終トリガーレートは 400Hz 程度であり、後段のデータ収集システムの処理および転送能力の許容範囲に収まっている。ルミノシティ (2.1 × 10^{34} \text{cm}^{-2}\text{s}^{-1}) における各事象の断面積とトリガーレートを表 (2.5) に示す。

<table>
<thead>
<tr>
<th>物理過程</th>
<th>表面積 (nb)</th>
<th>トリガーレート (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(BB) 事象</td>
<td>1.2</td>
<td>12</td>
</tr>
<tr>
<td>(qq) 事象</td>
<td>2.8</td>
<td>28</td>
</tr>
<tr>
<td>(\mu/\gamma) 対生成</td>
<td>1.6</td>
<td>16</td>
</tr>
<tr>
<td>Bhabha 散乱</td>
<td>44</td>
<td>4.4^{(a)}</td>
</tr>
<tr>
<td>光子対生成</td>
<td>2.4</td>
<td>0.24^{(a)}</td>
</tr>
<tr>
<td>計</td>
<td>67</td>
<td>96</td>
</tr>
</tbody>
</table>

表 2.5: トリガーレート

2.2.9 データ収集システム (DAQ)

Belle データ収集システムの概要を図 (2.11) に示す。\(BB\) 事象または \(qq\) の 1 事象あたりのデータサイズは約 30KB であり、これは最大 15MB/s のデータ転送速度に相当する。
トリガー信号を受け取ると、各検出器は独立にその事象のデータを読みます。この段階では1事象のデータは各検出器毎に分割されています。これをイベントフラグメントと呼ぶ。イベントフラグメントを作成するために、KLMとSVDを除いた各検出器からの信号の読み出しにはcharged-to-time(Q-to-T)コンバーターを用いる。これは電荷を一度コンデンサーに蓄え、一定の速度で放電する際に放電を始める時と終わる時に2回パルスを発生する回路を用いて、入力信号の電荷に比例した時間差を持つ2つのパルスを生成するものである。この出力パルスの時間差はFASTBUS マルチヒット TDC(LeCroy 1877S) を用いてデジタル化する。KLMからの情報はマルチブレクサで多重化して、同じ型のTDCで読みます。SVDのデータ収集はSVD1とSVD2では異なる。SVD1の場合は、シリコン検出器ラダーの信号はフラッシュADC(FADC)に送られ、ここでデジタル化した時系列データをデジタル信号処理(Digital Signal Processing:DSP)によってデータサイズを小さくした上でVMEを4個用いて並列にイベント・ビルダーへ転送していた。SVD2ではDSPに代えて十数台およびPCサーバーを並列させて時系列データの処理を実行している。

図 2.11: DAQ

検出器サブシステム毎に読みだしたデータはイベント・ビルダーに転送され、1つの事象のデータとしてまとめられる。その後オンライン・コンピュータ・ファームで事象選別を行ってデータの書式を整え、コンピュータ・センターのマスストレージシステムにデータを送る。オンライン・コンピュータ・ファームは同時に、測定器が正常に動作しているかを確認するためにデータ・クオリティ・モニター(DQM)とイベント・ディスプレイにも抽出した事象データを送る。
2.2.10 KEKB計算機システム

データ収集システムが出力するデータは、測定器の電気信号が数値化されたもの（raw data）である。ここから、事象中に生じた粒子の通過位置、通過時刻、エネルギー、運動量といった物理量を再構成することが求められる。再構成の結果得られるデータを DST（Data Summary Tape）と呼び、DSTを得る計算処理を DST プロダクションと呼ぶ。DST プロダクションと個々の物理解析に必要な演算処理能力は 30,000MIPS である。また、年間 100TB に及ぶデータの記憶容量が必要である。KEKB 加速器では、多数個の CPU による事象毎の並列計算処理と大容量テープドライブシステム、マイグレーションされた多数のディスクアレイ装置によってこれらの仕様を実現している。
第3章 $B^\pm \rightarrow \psi'\pi^0K^\pm$ 過程

本研究では、荷電 B 中間子が ψ' 中間子、中性 π 中間子、荷電 K 中間子に三体崩壊する過程についてのシミュレーションデータを $\psi'\pi^0$ の質量分解能を調べるとともに、Belle 検出器が収集した $2.77 \times 10^8 B$ 中間子対生成事象のデータを用いて再構成された B 崩壊の信号事象数抽出を行い、そのうち既知の過程である $B^\pm \rightarrow \psi'K^\pm$ の寄与を確認した。以下にその解析の手順について述べる。

3.1 実験データの処理と選別

ここでは、Belle 検出器で収集した実験データを処理し、$B^\pm \rightarrow \psi'\pi^0K^\pm$ 崩壊事象の選別を行うためのデータサンプルについて説明する。さらに、実験データとの比較検討が不可欠なモンテカルロシミュレーションについて述べる。

3.1.1 データ処理と解析の流れ

図 (3.1) にデータ処理と解析の流れの概略を示す。Belle 検出器の各サブシステムが発する電気信号は 2.2.9 に述べたようにデータ収集システムで数値化されて記録される。この段階のデータを Raw Data(生データ) という。ここに必要な操作を行ったデータを作り、それをもとにし、事象中に発生した粒子の四元位置ベクトルと四元運動量を再構成する。ここまで処理が進んだものが Data Summary Tape である。

モンテカルロシミュレーションの事象生成を行う部分はイベントジェネレーターと呼ばれ、電子・陽電子衝突で発生する粒子の四次元運動量を、理論の予言や既知の確率分布にしたがって疑似乱数を用いて生成する。イベントジェネレーターとして、B 中間子崩壊過程を扱う研究で広く使われている Evtgen[8] プログラムを使用した。このプログラムは持続状態の粒子のスピンと軌道角運動量の保存を考慮した運動学的モデルを必要に応じて選択でき、かつ時間依存 CP 対称性の破れの効果を取り扱えるようになっている。こうして生成した事象中の粒子が検出器構成する物質と相互作用し、その結果として電気信号パルスの形成を経て、数値化された Raw Data と等価なものを出力するまでをシミュレーションするのが検出器シミュレーターである。粒子と検出器を構成する物質との相互作用は GEANT[9] を用いてシミュレートした。GEANT はモンテカルロ法により電磁相互作用 (物質のイオン化、制御放射等) と強い相互作用の効果による粒子のエネルギー損失と二次粒子の生成を取り扱う。これに検出器の雑音の影響を加味して Raw Data 形式で出力する。これは実験データと同じ式式であるので、以後のデータ処理及び解析処理は実験データの処理に用いるソフトウェアと同じものを使用して比較できる。次節以降で、DST から B 中間子対生成事象の選別を行う方法とレプトン同定について述べる。
図 3.1: データ
3.1.2 B中間子対生成事象の選別

Belle検出器で収集される事象には、B中間子対生成を含むハドロン事象の他に、Rhabha散乱（電子・陽電子の弾性散乱）、μ粒子・τ粒子対生成事象などがある。よって、ハドロン事象以外の反応やビームからのバックグラウンドを排除し、主としてB中間子対生成からなるハドロン生成事象を選別する必要がある。まず初めに以下の条件を満たす荷電粒子の飛跡と、ECLで測定されたクラスターを選ぶ。

- 飛跡の条件
 - 運動量のビーム軸に垂直な成分 $P_t > 0.1\text{GeV/c}$
 - 飛跡とビーム軸の最近接距離 $|dr| < 2.0$cm
 - 最近接点でのz方向の位置 $|dz| < 4.0$cm

- クラスターの条件
 - クラスターのエネルギー $E > 0.1\text{GeV}$

こうにして選んだ飛跡とクラスターに以下の条件を与える。

- 飛跡から再構成された事象生成点の衝突点からの xy平面に投影した距離 (V_r) およびz座標 (V_z) がそれぞれ

 $V_r < 1.5$cm かつ $|V_z| < 3.5$cm

- 少なくとも3本以上の飛跡が存在すること
- クラスターが実験室系において $-0.7 \leq \cos \theta \leq 0.9$の範囲に2つ以上存在すること

さらに、$\Upsilon(4S)$静止系にローレンツブーストし、以下の条件を与える。

- 荷電粒子がエネルギーの総和にシャワーのエネルギーの総和を加えたvisable energy(E_{vis})が

 $E_{\text{vis}} > 0.2E_{\text{tot}}$

を満たすこと。E_{tot}は$\Upsilon(4S)$静止系の全エネルギー(10.58GeV)である。これは二光子衝突反応からくるバックグラウンドを除くための条件である。

- 飛跡のz成分の運動量総和 (P_z) が

 $|P_z| < 0.5E_{\text{tot}}$

を満たすこと。これは二光子衝突反応やビームガス事象によるバックグラウンドを除くための条件である。
ECL で測定されたエネルギーの総和 \(E_{\text{sum}} \) が

\[0.1 < \frac{E_{\text{sum}}}{E_{\text{tot}}} < 0.8 \]

を満たすこと。Bhabha 散乱が非常に大きな反応断面積をもつため、電子あるいは陽電子が測定器を構成する物質と相互作用したとき 1 事象中に 3 本以上の飛跡を残す。これは、それによって生じるバックグラウンドを除くための条件である。

以上の条件を満たす事象をハドロン事象とする。さらに、B 中間子対生成以外の Continuum ハドロン事象のバックグラウンドを低減するために以下の条件を加えた。

- 事象の形状を表す変数 \(R_2 \) が

\[R_2 = \frac{H_2}{H_0} < 0.5 \]

であること。ここで、\(H_2, H_0 \) は Fox-Wolfram モーメントの第 2 成分 (2 次) と第 0 成分 (0 次) である [10]。これは終状態の粒子が空間的に等方的に分布していることを要求するものである。

以上の条件を満たす事象の \(J/\psi \) や \(\psi' \) がレプトン対に崩壊したものを終状態に含む B 中間子対生成事象の検出効率は 99.9% である。

3.1.3 粒子の識別

本研究にとって電子の識別は \(J/\psi \rightarrow e^+e^- \) を再構成するために必要不可欠である。電子の識別には、以下のような 5 つの物理量を用いる。

1. CDC で測定された飛跡の延長と ECL で測定されたシャワーの位置との合致
2. ECL で測定したエネルギー \(E \) と CDC で測定された荷電粒子の運動量 \(p \) のと比 \(E/p \)
3. ECL でのシャワーの形状
4. CDC で測定したチェレンコフ光の光量
5. ACC で検出したチェレンコフ光の光量

以下、各々の物理量について詳しく述べる。

1. シャワーの位置と外挿した飛跡の位置との合致

電子の識別についてもっとも重要なのは \(E/p \)、すなわち、ある荷電粒子が ECL で生じたエネルギー損失と CDC で測定した運動量の大きさの比である。これを正確に得るために、CDC で飛跡として検出された荷電粒子と、これが ECL に達して生成したシャワーとの正しい組み合わせを見つければならない。ハドロンよりも電子の方が ECL で検出したシャワーの位置分解能
が低いので、外挿した飛跡とシャワーの位置は電子の方がよく一致する。そこで、外挿した飛跡とシャワーの位置の \(\phi \) と \(\theta \) の差をそれぞれ \(\Delta \phi \) と \(\Delta \theta \) とし、電子を識別するために \(\chi^2 \) を

\[
\chi^2 \equiv \frac{(\Delta \phi)^2}{\sigma_{\Delta \phi}} + \frac{(\Delta \theta)^2}{\sigma_{\Delta \theta}}
\]

と定義する。\(\sigma_{\Delta \phi} \) と \(\sigma_{\Delta \theta} \) は電子の \(\Delta \phi \) と \(\Delta \theta \) 分布をそれぞれ Gaussian でフィットして得られる標準偏差である。それぞれの飛跡について、最小の \(\chi^2 \) をもと、\(\chi^2 \) が 50 以下のシャワーを合致したシャワーとみなす。合致するシャワーが検出されなかった場合は、\(E/p \), P9/E25 以外の情報だけを用いて電子である確率を計算する。ここで、E9 はシャワーの中心を取り囲む 3×3 の計 9 本の結晶で検出されたエネルギー、E25 は同様に 5×5 の計 25 本の結晶で検出されたエネルギーである。

2. \(E/p \)

電子が ECL に生成するシャワーのエネルギーエ \(E \) は、電子の運動量 \(p \) とほぼ等しい \(E \sim p \)。これに対し、ハドロンの場合は、ECL に生成するシャワーのエネルギーエは粒子の運動量よりも小さくなる \(E < p \)。したがって、\(E/p \) が 1 に近いものは電子である確率が高い。この分布から電子をハドロン (または \(\mu \) 粒子) のそれぞれに \(E/p \) の確率密度関数を用意して、明確に区別できる。

3. シャワーの形状

電磁シャワーとハドロンシャワーでは、前者はその中央部で核となる粒子群が明瞭に形成されるのに対して、後者は相互作用長 (Interaction length) が幅射長 (Radiation length) より長いため生成した粒子群が広く散らばって形状が異なる。この違いから電子とハドロンを区別することがができる。したがって、ハドロンと電子で異なる E9/E25 の確率密度関数を用意して区別の指標の一つとする。

4. \(dE/dx \)

CDC でのエネルギー損失 \(dE/dx \) は、電子の場合は相対論的効果で大きくなっているため、ハドロンとの区別に役立てることができる。

5. チェレノコフ光

電子は質量が小さいので、近さが光速に近くなる。そのためほとんどの場合、ACC 内でチェレノコフ光を発する。

これらの物理量から電子である likelihood ratio \(P_{e|d} \) は

\[
P_{e|d} = \frac{\Pi_i P_e(i)}{\Pi_i P_e(i) + \Pi_i P_h(i)}
\]

と定義される。ここで \(i \) は上記 1~5 のそれぞれの物理量を表し、\(P_e(i) \) は物理量 \(i \) からその粒子が電子であると同定される確率密度、\(P_h(i) \) はハドロンであると同定される確率密度である。

36
μ粒子識別

μ粒子の識別には、CDC、KLMからの情報を用いる。CDCで測定した荷電粒子の飛跡をKLM内に外挿し、以下の量を計算することでその飛跡がハドロンであるかμ粒子であるかを識別する。

- KLMまで外挿した飛跡と、実際にKLMで検出されたヒット位置との差に基づくχ²
- 飛跡がμ粒子であったときに実際KLM層の数の期待値と、実際に飛跡が貫いた層の数の差ΔR

ΔRとχ²の確率密度分布はモンテカルロシミュレーションで求める。ΔRとχ²はほぼ独立な物理量なので、検出された飛跡がμ粒子である確率密度p(ΔR, χ²)は2つの確率密度関数PμΔR、Pμχ²の積をとる。

\[p(ΔR, χ²) = PμΔR \times Pμχ² \]

この確率密度に基づいてμ粒子であるLikelihood Lμを求める。μ粒子の候補となる荷電粒子を運ぶには、Lμの値に適切な要求を行えばよい。

本研究におけるνと再構成するためのレプトンの選別条件は

- 飛跡が最も衝突点に近づいた点のz成分(Δz)が5cm以内であること
- 飛跡が最も衝突点に近づいた点のビーム軸との距離が2cm以内であること
- 電子: Pνe > 0.01
- μ粒子: Lμ > 0.1

とした。

荷電π中間子と荷電K中間子の識別

Belle検出器では、荷電π中間子と荷電K中間子の識別はCDC、TOF、ACCの3つの検出器の情報を組み合わせて行う。すなわち、飛跡測定によって運動量を測り、これとCDCのエネルギー損失(dE/dx)、TOFでの飛行時間、ACCでの光電子数(Npe)の情報を組み合わせて用いる。dE/dxは0.8GeV以下、ACCは1.2〜3.5GeV/cの運動量領域が識別可能な範囲である。以上の3つの検出器の情報からLikelihood ratio(LR)は

\[LR(i : j) = \frac{L_i}{L_i + L_j} \]

のように定義される。ここで、iは選別したい粒子、jはバックグラウドの粒子の種類を表す添字で、e, μ, π、K、pのいずれかである。L_i、L_jはi、jそれぞれの種類である確率密度を表し、L(i : j)はその粒子の種類がiまたはjであると仮定した場合に粒子がiである確率を表す。

L_iは3つの検出器n情報から求めた確率密度の積で、

\[L_i = L_i^{CDC} \times L_i^{TOF} \times L_i^{ACC} \]

のように与えられる。
本研究では、B 中間子再構成のための K^\pm の選別において、各々の飛跡に $LR(K : \pi) > 0.6$ を要求する。ここで、$LR(K : \pi)$ は K 中間子である likelihood ratio を表す。

3.2 $B^{\pm} \to \psi' \pi^0 K^{\pm}$ 事象の再構成

$B^{\pm} \to \psi' \pi^0 K^{\pm}$ 崩壊の候補事象を選別するには、$J/\psi \to l^+l^-$、$\psi' \to J/\psi \pi^+\pi^-$、$\pi^0 \to \gamma\gamma$ で再構成した ψ'、π^0 に、粒子識別の情報を用いて選別した K^{\pm} を組み合わせる。ここで、l は e または μ を総称したものである。さらに、B^\pm の崩壊過程に特徴的な運動学的条件を満たしたものを候補とする。この節では、前節までに述べた条件を課して選別した粒子の組み合わせをとって B 中間子を再構成する手順について述べる。

3.2.1 $J/\psi \to l^+l^-$ の再構成

J/ψ は以下の崩壊分岐比でレプトン対に崩壊する。

$$J/\psi \to e^+e^- : (5.94 \pm 0.06) \%$$
$$J/\psi \to \mu^+\mu^- : (5.93 \pm 0.06) \%$$

J/ψ からレプトン対への崩壊過程の選別は、既述した条件により同種類のレプトンと同定され、かつ互いに逆符号の電荷をもつ 2 本の飛跡を組み合わせた不変質量を用いる。ここで、$J/\psi \to e^+e^-$ の崩壊過程においては、電子または陽電子が制動放射により γ を放出して運動量を失うことがある。この場合は再構成した飛跡から得られる運動量が実際よりも低く測定されてしまうので、再構成の際にそれを使い込む必要がある。そこで、電子または陽電子の生成点における運動量ベクトルとのなす角が 50mrad 以内の範囲で検出した γ の運動量を、飛跡から求めたレプトン対の運動量に加えて、不変質量を計算した。以下、この不変質量を $M_{ee(\gamma)}$ と書く。図 (3.2), (3.3) にレプトン対の不変質量分布を示す。$J/\psi \to e^+e^-$ の不変質量分布では、制動放射による γ を検出できなかった事象の寄与があるため、$J/\psi \to \mu^+\mu^-$ の不変質量分布に比して低い方に尾を引いている。これを考慮し、各々の不変質量が

$$-0.150 \text{GeV/c}^2 < M_{ee(\gamma)} - M_{J/\psi} < 0.036 \text{GeV/c}^2$$
$$-0.06 \text{GeV/c}^2 < M_{\mu\mu} - M_{J/\psi} < 0.036 \text{GeV/c}^2$$

を満たすものを J/ψ 候補とした。ここで、$M_{J/\psi}$ は J/ψ の質量である。J/ψ は非常に幅が狭いチャーモニウムなので、その再構成された崩壊点の真の位置からずれ、および不変質量分布は測定器の分解能のみに依存する。そこで、分解能を向上させるために、上記の J/ψ 候補に vertex fit と mass constraint fit を適用した。

- vertex fit
 - 2 本の飛跡が同じ崩壊点から発生していることを束縛条件として、その条件下で運動量ベクトルに最小二乗法を実行して最も確からしい J/ψ の崩壊点と運動量を求める。
図 3.2: モンテカルロシミュレーションによるレプトン対の不変質量分布
左側：e^+e^- 対、右側 $\mu^+\mu^-$ 対。
点線で示した領域内のイベントを J/ψ 候補として選ぶ。

図 3.3: 実験データによるレプトン対の不変質量分布
左側：e^+e^- 対、右側 $\mu^+\mu^-。
点線で示した領域内のイベントを J/ψ 候補として選ぶ。
mass constraint fit

- 再構成する粒子の質量が既知の値と一致することを束縛条件として、その条件下で運動量ベクトルに最小二乗法を実行して最も確からしい J/ψ' の運動量を求める。

3.2.2 $\psi' \to J/\psi \pi^+ \pi^-$ の再構成

ψ' は以下の崩壊分岐比で $J/\psi \pi^+ \pi^-$ に崩壊し、このモードは ψ' を得るために最も有効なもの的一つである。

$\psi' \to J/\psi \pi^+ \pi^- : (33.6 \pm 0.4) \%$

ここで、$J/\psi \pi^+ \pi^-$ の質量 $M(J/\psi \pi^+ \pi^-)$ に対して

$-0.58\text{GeV}/c^2 < M_{J/\psi \pi^+ \pi^-} - M_{J/\psi} < 0.60\text{GeV}/c^2$

図 3.4: $-0.58\text{GeV}/c^2 < M_{\psi'} - M_{J/\psi} < 0.60\text{GeV}/c^2$ 範囲でのモンテカルロシミュレーションによる ψ' の不変質量分布

点線で示した領域を ψ' 候補として選ぶ。

を満たすものを ψ' 候補とした。また、J/ψ の再構成と同様に vertex fit, mass constraint fit を ψ' 候補に適用した。
図 3.5: $-0.58 \text{GeV/c}^2 < M_{\psi'} - M_{J/\psi} < 0.60 \text{GeV/c}^2$ 範囲での実験データによる ψ' の不変質量分布
点線で示した領域を ψ' 候補として選ぶ。
3.2.3 $\pi^0 \rightarrow \gamma\gamma$ の再構成

π^0 は 99 % の崩壊分岐比で 2 つの γ に崩壊する。よって ECL で検出された γ 対の不変質量を用いて π^0 候補を選ぶ。パラレル部分で 50MeV、エンドキャップ部分で 100MeV より大きいエネルギーを用いて、γ 対の実験室系での運動量が 0.1GeV/c 以上の不変質量分布を図 (3.6) に示す。γ 対の不変質量が

$$0.118\text{GeV/c}^2 < M_{\gamma\gamma} < 0.15\text{GeV/c}^2$$

を満たすものを π^0 候補とした。また、π^0 の運動量の精度を向上させるために、γ 対にも mass constraint fit を使用した。

3.2.4 ΔE および M_{bc} を用いた B 再構成

上記の方法で得た ψ' 候補と π^0 候補に K 中間子を組み合わせ、同一の B 中間子から崩壊したと思われる候補の組み合わせを探す。これを B 再構成と呼ぶ。その際、$\Upsilon(4S)$ から B 中間子のみが生じる二体反応の運動学的条件を生かした以下の 2 つの運動学的変数のビームコンストレイントマス (M_{bc}) とエネルギーの差 (ΔE) を用いて B 中間子崩壊の候補を同定する。

$$M_{bc} = \sqrt{E_{\text{beam}} - |P_{\psi'}^2 + P_{\pi^0}^2 + P_{K\pm}^2|}$$ \hspace{1cm} (3.1)

$$\Delta E = (E_{\psi'}^* + E_{\pi^0}^* + E_{K\pm}^*) - E_{\text{beam}}$$ \hspace{1cm} (3.2)
beam: ビームエネルギー (Y(4S) 重心系エネルギーの 1/2)

$P^2_{\psi'}, E^*_{\psi'}$: ψ' の運動量とエネルギー

$P^2_{\pi^0}, E^*_{\pi^0}$: π^0 の運動量とエネルギー

P^2_K, E^*_K: K の運動量とエネルギー

これらの式に含まれる物理量は全て Y(4S) 静止系である。また、M_{bc} と ΔE は互いにほぼ独立な変数である。

もし、ψ' と π^0 と K^\pm の全てが同一の B 中間子から崩壊した事象 (シグナル事象) であれば、ψ' と π^0 と K^\pm を組み合わせた変変量 M_{bc} は B 中間子の質量 (5.279GeV/c²) と一致する。ここで式 (3.1) では検出器で測定した終状態粒子のエネルギー和ではなく、Y(4S) 静止系の全エネルギーの半分である $E_{beam} = 5.29$GeV を用いた。これは本来 B 中間子が持つべき有効なエネルギーなので、この値を用いることで測定器のエネルギーや運動量の測定誤差の影響を除き、変変量の精度を向上できる。加速器のビームエネルギーの広がりによる寄与は残るが、測定器のエネルギー分解能に比べて非常に小さい。

また、ΔE は、Y(4S) 静止系において本来 B 中間子が持つべきエネルギーと、終状態に現れる ψ'、π^0、K^\pm が持つエネルギー総和の差である。もし選別した ψ'、π^0、K^\pm の組み合わせが正しければ、ΔE は測定器のエネルギー分解能の範囲で 0 と一致する。この M_{bc} と ΔE を用いて、$B^\pm \rightarrow \psi'\pi^0K^\pm$ 事象を選別する。

3.2.5 最良 B 候補選別

信号とバックグラウンドの両方の分布を理解するために、$M_{bc} > 5.2$GeV/c²、$|\Delta E| < 0.2$GeV の領域に見出された ψ'、π^0、K^\pm の組み合わせを候補事象とする。得た候補事象に対して B 候補が数個存在する場合がある。図 (3.7) は、後述する $B^\pm \rightarrow \psi'\pi^0K^\pm$ 位相空間モデルによるシグナル事象のモンテカルロシミュレーションデータにおいて、見出した 1 事象あたりの B 候補の数の分布である。そこで、複数存在する B 候補の中から最良のものを選ぶ必要がある。B 候補が複数存在する原因として最も大きい寄与をするのは、π^0 再構成において片方あるいは両方の γ が誤っている場合である。それに加えて寄与は小さくなるが J/ψ 再構成の際のレプトンの組み合わせや ψ'、K^\pm 選別を誤る効果もありえる。これらを考慮し、1 つの事象に対して 2 つ以上の組み合わせが存在する場合、以下の手順で最良の B 候補を決定する。

1. 再構成した ψ'、J/ψ、π^0 の変変量が既知の質量に最も近い

以下で定義する χ^2 が最小となる組み合わせを選ぶこととする。

$$\chi^2 = \chi^2_{\psi'} + \chi^2_{J/\psi} + \chi^2_{\pi^0}$$ (3.3)

$$\chi^2_{\psi'} = \left(\frac{M_{J/\psi+\pi^0} - M_{\psi'}}{\sigma_{\psi'}}\right)^2$$ (3.4)
\[\chi^2_{J/\psi} = \left(\frac{M_{l^+l^-} - M_{J/\psi}}{\sigma_{J/\psi}} \right)^2 \]
\[\chi^2_{\pi^0} = \left(\frac{M_{\gamma\gamma} - M_{\pi^0}}{\sigma_{\pi^0}} \right)^2 \]

\(M_{J/\psi \pi^+\pi^-} \): \(J/\psi \pi^+\pi^- \)の質量

\(M_{\psi'} \): \(\psi' \)の質量

\(\sigma_{\psi'} \): \(\psi' \)の質量分解能

\(M_{l^+l^-} \): レプトン対の不変質量

\(M_{J/\psi} \): \(J/\psi \)の質量

\(\sigma_{J/\psi} \): \(J/\psi \)の質量分解能

\(M_{\gamma\gamma} \): 光子対の不変質量

\(M_{\pi^0} \): \(\pi^0 \)の質量

\(\sigma_{\pi^0} \): \(\pi^0 \)の質量分解能

今回用いた質量分解能 \(\sigma \) の値を表 (3.1) にまとめる。

<table>
<thead>
<tr>
<th>崩壊モード</th>
<th>分解能 (\sigma) (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\psi' \to J/\psi \pi^+\pi^-)</td>
<td>2.9</td>
</tr>
<tr>
<td>(J/\psi \to e^+e^-)</td>
<td>16.0</td>
</tr>
<tr>
<td>(J/\psi \to \mu^+\mu^-)</td>
<td>10.6</td>
</tr>
<tr>
<td>(\pi^0 \to \gamma\gamma)</td>
<td>5.3</td>
</tr>
</tbody>
</table>

表 3.1: 最良 \(B \) 候補選別に用いた各質量分解能

2. \(K^\pm \) の Likelihood ratio が高い

上記1で定義した \(\chi^2 \) の値が等しい場合は、荷電 \(K \) 中間子で \(M_{bc} \) と \(\Delta E \) の条件を満たすものが1事象中に複数あることを意味する。この場合、\(K \) 中間子の Likelihood ratio の値が大きいものを最良 \(B \) 候補として選ぶ。

本論文で示すこれ以降の分布は全て、最良 \(B \) 候補選別を行った後の分布である。
図 3.7: $B^\pm \to \psi' \pi^0 K^\pm$ 位相空間モデルによるシグナル事象のシミュレーションデータにおける最良 B 選別前の B 候補数

横軸は B 候補の数、縦軸は事象数である。$M_{bc} > 5.2\text{GeV}/c^2, |\Delta E| < 0.2\text{GeV}$ の事象を選んだ。
3.2.6 $B^\pm \rightarrow \psi'\pi^0 K^\pm$ 位相空間モデルによる検討

着目する種々の物理量を正当に再構成できるか確認するために、$B^\pm \rightarrow \psi'\pi^0 K^\pm$ 事象を、プラス電荷、マイナス電荷、電荷各々の場合について 50,000 事象ずつ合計で 100,000 事象モンテカルロシミュレーションで作成した。この時、B^\pm から三体崩壊する ψ'、π^0、K^\pm を運動学的に許される位相空間中に均等に分布させる Phase space decay と呼ばれるモデルを用いた。この 100,000 事象のシグナル事象を生成したシミュレーションデータで $B^\pm \rightarrow \psi'\pi^0 K^\pm$ 過程を再構成した結果を図 (3.8) に示す。

図 3.8: 位相空間モデルのシミュレーションデータが示す M_{bc} と ΔE の分布
左上：$5.27 < M_{bc} < 5.29\text{GeV/c}^2$ に含まれる事象の ΔE 分布
右上：M_{bc} と ΔE 二次元分布
右下：$-0.06 \leq \Delta E \leq 0.04\text{GeV}$ に含まれる事象の M_{bc} 分布
点線はシグナル領域の上限と下限を示す。

図 (3.8) において、シグナル事象のシミュレーションデータにもかかわらず、ΔE についてシグナルの分布がピークを形成する領域：シグナル領域 ($5.27 < M_{bc} < 5.29\text{GeV/c}^2$ かつ $-0.06 \leq \Delta E \leq 0.04\text{GeV}$)
図 3.9: 正しい組み合わせ (白)、π^0 の再構成時にγを1つ誤ったもの (黄)、両方のγを誤ったもの (緑)、その他の粒子を誤ったもの (青)

<table>
<thead>
<tr>
<th>組み合わせ</th>
<th>事象数</th>
<th>割合 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>全て正しい組み合わせ</td>
<td>4955</td>
<td>43.1</td>
</tr>
<tr>
<td>γを1つ誤った組み合わせ</td>
<td>2648</td>
<td>23.0</td>
</tr>
<tr>
<td>γを2つ誤った組み合わせ</td>
<td>2152</td>
<td>18.7</td>
</tr>
<tr>
<td>その他の組み合わせ</td>
<td>1735</td>
<td>15.1</td>
</tr>
</tbody>
</table>

表 3.2: シグナル領域中で誤った組み合わせで再構成した事象の割合 (Phase space decay)

5.27 < M_{bc} < 5.29GeV/c^2 に含まれる事象である。
この分布の広がりは測定器の分解能でよく説明できるので、γの組み合わせを誤ったπ0を用いて再構成した事象による影響は小さいと言える。

図3.10: Phase space decayのシグナルMCにおけるM(ψ′π0)の再構成後と事象生成段階に組み合わせの正誤で分類した再構成したM(ψ′π0)と生成時の比
正しい組み合わせ(白)、π0からのγを1つ誤ったもの(黄)、両方のγを誤ったもの(緑)、その他の粒子を誤ったもの(青)

3.2.7 $B^\pm \rightarrow Z(4430)^0 K^\pm$モデルによる検討

前述の位相空間モデルと同様に、$B^\pm \rightarrow Z(4430)^0 K^\pm (Z(4430)^0 \rightarrow \psi' \pi^0)$ 事象をプラス電荷・マイナス電荷各々の場合について50,000事象ずつ計100,000事象をモンテカルロシミュレーションで作成した。

次に、終状態の粒子の組み合わせの正誤で分類したΔE分布を図(3.11)に、その割合を表(3.3)に示す。

次に、終状態の粒子の組み合わせの正誤で分類したΔE分布を図(3.12)に、その割合を表(3.3)に示す。$B^\pm \rightarrow \psi' \pi^0 K^\pm$の場合と同様に、組み合わせを誤る原因の中では、π0からγを1つ誤って組み合わせているものの割合が最も多い。
図 3.11: $B^\pm \rightarrow Z(4430)^0 K^\pm (Z(4430)^0 \rightarrow \psi'\pi^0)$ モンテカルロシミュレーションによる M_{bc} と ΔE の期待される分布

左上: $5.27 < M_{bc} < 5.29 \text{GeV}/c^2$ に含まれる事象の ΔE 分布
右上: M_{bc} 一 ΔE2 次元分布
右下: $-0.06 < \Delta E < 0.04 \text{GeV}$ に含まれる事象の M_{bc} 分布
点線はシグナル領域の上限と下限を示す。

<table>
<thead>
<tr>
<th>組み合わせ</th>
<th>事象数</th>
<th>割合 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>全て正しい組み合わせ</td>
<td>6759</td>
<td>61.2</td>
</tr>
<tr>
<td>γ を 1 つ誤った組み合わせ</td>
<td>1966</td>
<td>17.8</td>
</tr>
<tr>
<td>γ を 2 つ誤った組み合わせ</td>
<td>635</td>
<td>5.8</td>
</tr>
<tr>
<td>その他の組み合わせ</td>
<td>1683</td>
<td>15.2</td>
</tr>
</tbody>
</table>

表 3.3: シグナル領域中で誤った組み合わせで再構成した事象の割合
図 3.12: 正しい組み合わせ（白）、π^0 の再構成時にγ を 1 つ誤ったもの（黄）、両方のγ を誤ったもの（緑）、その他の粒子を誤ったもの（青）

図 3.13: \(B^\pm \rightarrow Z(4430)^0 K^\pm \) 過程のシミュレーションにおける \(\psi'\pi^0 \) の不変質量分布 -0.06 < ΔE < 0.04 かつ 5.27 < M_{bc} < 5.29GeV/c^2 を満たすという条件を課した。

\(M(\psi')\pi^0 = 4.43\)GeV 付近に Z(4430)^0 によるピークが見られる。
図 3.14: $B^+ \rightarrow Z(4430)^0 K^+$ 過程のシミュレーションにおける $M(\psi'\pi^0)$ の比 (再構成後/事象生成段階)

-0.06 < ΔE < 0.04 かつ 5.27 < M_{bc} < 5.29 GeV/c^2 を満たすという条件を課した。
正しい組み合わせ (白)、π^0 の再構成時に γ を 1 つ誤ったもの (黄)、両方の γ を誤ったもの (緑)、その他の粒子を誤ったもの (青)
3.3 モンテカルロシミュレーションによる既知の過程の期待値の分布

$B^\pm \to \psi' \pi^0 K^\pm$ 以外の過程で選別条件を満たしてしまったものがバックグラウンドである。$\psi' \to \pi^+ \pi^-$ モードを用いているのでバックグラウンドのほとんどは、B 中間子生成のうち少なくとも片方がJ/ψ を伴う崩壊をした事象である。そこで、こうした事象についての実験データの 100 倍にあたるモンテカルロシミュレーション(Inclusive J/ψ MC) を用いてバックグラウンドおよび既知の過程の期待値の分布を評価した。図 (3.15) に寄与の大きい崩壊モードを色分けした ΔE 分布を示す。特に寄与が大きいモードとして、$B^\pm \to \psi' K^\pm$、$B^\pm \to \psi' K^*(892)^\pm$、$B^0 \to \psi' K^*(892)^0$ が挙げられる。$B^\pm \to \psi' K^\pm$ が含まれるのは、再構成した ψ' と K^\pm に他方からの π^0 候補を加えたためで、ΔE の値が 0 にならず、π^0 の質量に対応して $\Delta E > 0.135 \text{GeV}$ のところで分布する。

$B^\pm \to \psi' K^*(892)^\pm$ 過程は $K^*(892)^\pm \to K^\pm \pi^0$ と崩壊すると終状態が ψ'、π^0、K^\pm となり、この終状態に至る既知の崩壊過程である。この $B^\pm \to \psi' K^*(892)^\pm$ とそれに続く $K^*(892)^\pm \to K^\pm \pi^0$ とも崩壊分岐比が既知であるため、信号を抽出して期待値と比較することにより、解析手順の正当性を確認するという目的に適したコントロールサンプルと見なすことができる。

図 3.15: $B \to J/\psi X$ 過程が示す ΔE 期待値の分布
5.27 < $M_{bc} < 5.29 \text{GeV/}c^2$ を満たした事象を選んだ。
3.4 $B^\pm \to \psi'\pi^0 K^\pm$ 信号事象の抽出

以上の選別条件を用いて、$2.77 \times 10^8 B$ 中間子生成事象を記録した実験データから $B^\pm \to \psi'\pi^0 K^\pm$ 候補事象を再構成した結果を図 (3.16) に示す。$M_{bc}=5.28\text{GeV}/c^2$ かつ $\Delta E=0$ 付近に、シグナル事象による明瞭なピークが見られる。この候補事象の ΔE 分布に適切な確率密度関数を用いた最大尤度法によるフィットを行い、シグナルの事象数を得る。ΔE の分布を 4つの寄与に分け、次のような関数の和を用いてフィットを行った。

1. シグナルである $B^\pm \to \psi'\pi^0 K^\pm$ の終状態の粒子を全て正しく組み合わせて検出した寄与 (コアパート)：Gaussian
 - Gaussian

 $$f(x) = \frac{1}{N} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2} \right)$$

 ここで、N は規格化定数、μ は平均値、σ は標準偏差である。
 図 (3.17) に示すように、$\sigma=14\text{MeV}/c^2$ のガウス分布でよく近似できる。

2. $B \to \psi'K^*$ バックグラウンド：2つの Bifurcated gaussian の足し合わせ
 - Bifurcated gaussian

 $$f(x) = \frac{N}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2} \right)$$

 ここで、N は規格化定数、μ は平均値、σ は標準偏差である。ただし、$\sigma(x-\mu) = \sigma_L(x < \mu)$ かつ $\sigma_R(x \geq \mu)$ とする。

3. $B \to \psi'K^\pm$ バックグラウンド：2つの Bifurcated gaussian の足し合わせ

4. 終状態の粒子の組み合わせを誤ったシグナルとその他のバックグラウンド：多項式 (2次)

 $$y=ax^2+bx+c$$

多項式以外の関数の形状を記述するパラメータはシミュレーションデータの分布を用いて決定した値に固定し、事象数と多項式のパラメータを変化させた。フィットの結果を図 (3.18) に示す。$B^\pm \to \psi'\pi^0 K^\pm$ 崩壊の事象数を 168 ± 22 と得た。
図 3.16: 実験データの ΔE と M_{bc} の分布
左上: $5.27 < M_{bc} < 5.29 \text{GeV/c}^2$ に含まれる事象の ΔE 分布
右上: $M_{bc} - \Delta E^2$ 次元分布
右下: $-0.06 < \Delta E < 0.04 \text{GeV}$ に含まれる事象の M_{bc} 分布
点線はシグナル領域の上限と下限を示す。
図 3.17: モンテカルロシミュレーションによる $\psi'K^*\pm$ の ΔE へのフィット

図 3.18: 実験データによる ΔE 分布へのフィットの結果
$5.27 < M_{bc} < 5.29 \text{GeV}/c^2$ という条件を課した。
3.5 $B^\pm \to \psi' K^{*\pm}$ 崩壊分岐比の確認

3.3 に述べた通り、$B^\pm \to \psi' K(892)^{\pm\pm}$ 今の結果は、その崩壊分岐比が既知である。そこで、解析結果の正当性を確認するために、$B^\pm \to \psi' K^{\pm\pm}$ 過程のうち、$K^{\pm\pm}$ 不変質量用いて $B^\pm \to \psi' K(892)^{\pm\pm}$ の寄与を抽出し、崩壊分岐比を算出して、世界平均値と比較することにした。

3.5.1 $K^{\pm\pi^0}$ 不変質量へのフィット

図 (3.18) より、約 0.03 < \Delta E < 0.03 GeV かつ 5.27 < M_{bc} < 5.29 GeV/c² をシグナル領域として定めた。また、モンテカルロシミュレーション (図 (3.19)) より、全体の分布を 3 つの寄与に分けて、それぞれに確率密度関数を用いて、その和を全体の分布関数として使用した。

1. $B^\pm \to \psi' K^* (892)^\pm$ (正しい組み合わせ): 共鳴を表現する Breit-Wigner 式に測定器の分解能を示す Gaussian を落込み積分した関数。質量 0.891 GeV、幅 0.04 GeV、\sigma = 0.01 GeV とした。

図 (3.20) に示すように、シミュレーションによる期待値の分布をよく表現できている。

2. $B^\pm \to \psi' K^* (892)^\pm$ (誤った組み合わせ): Double gaussian と bifurcated gaussian2 つの足し合わせ。関数の形はシミュレーションデータで決定した。

3. その他の崩壊モード ($B^{0} \to \psi' K^* (892)^{0}$ 等によるバックグラウンド): モンテカルロシミュレーションのヒストグラムを root ソフトウェアのスムージング機能を用いて関数に変換した。このバックグラウンドには $B^{0} \to \psi' K^* (892)^{0}$ が最も支配的な寄与をする。その理由は、$K^* (892)^{0} \to K^{\mp\pi^\pm}$ へと崩壊する際の荷電 K 中間子の運動学的条件はシグナルの $K^{*\pm\pm} \to K^{\pm\pi^0}$ で出てくるものとほぼ同じであるため、π^\pm の代わりに π^0 と組み合わせたものが、M_{bc} と \Delta E の条件を満たすためである。

フィットの結果を図 (3.21) に示す。その結果、$B^\pm \to \psi' K^{*\pm}$ 崩壊の信号は 69±13 事象と得た。
図 3.19: モルテカルロシミュレーションによる主な崩壊モードごとに分類した $M(K^\pm \pi^0)$ の不変質量
分布

-0.03 < ΔE < 0.03 かつ 5.27 < $M_{bc} < 5.29$ GeV/c² という条件を課した。

図 3.20: ψ' モルテカルロシミュレーションによる $B^\pm \rightarrow \psi' K^{*\pm}(K^{*\pm} \rightarrow K^\pm \pi^0)$ のシグナル MC で
終状態の粒子を全て正しく選んだ場合の $M(K^\pm \pi^0)$ へのフィット
図 3.21: 実験データによる $M(K^\pm \pi^0)$ へのフィットの結果
-0.03 < ΔE < 0.03 かつ 5.27 < M_{bc} < 5.29GeV/c² という条件を課した。
3.5.2 崩壊分岐比の算出

\[B^\pm \to \psi' K(892)^{\mp\pm} \quad (K(892)^{\mp\pm} \to K^\pm \pi^0) \] 過程の崩壊分岐比は次式で表される。

\[
Br(B^\pm \to \psi' K^*(892)^{\pm\pm}) = \frac{N_{sig}}{N_{B^\pm} \cdot \epsilon \cdot Br(\psi' \to J/\psi \pi^+ \pi^-) \cdot Br(J/\psi \to l^+ l^-) \cdot Br(K^*(892)^{\pm\pm} \to K^\pm \pi^0)}
\]

それそれぞれの値を以下の表にまとめ

<table>
<thead>
<tr>
<th>事象</th>
<th>(N_{sig})</th>
<th>69±13</th>
</tr>
</thead>
<tbody>
<tr>
<td>検出効率</td>
<td>(\epsilon)</td>
<td>4.42±0.07 %</td>
</tr>
<tr>
<td>(B^\pm) の数</td>
<td>(N_{B^\pm})</td>
<td>(2.77±0.03)×10^8</td>
</tr>
<tr>
<td>(\psi' \to J/\psi \pi^+ \pi^-) 崩壊分岐比</td>
<td>(Br(\psi' \to J/\psi \pi^+ \pi^-))</td>
<td>33.6±0.04 %</td>
</tr>
<tr>
<td>(J/\psi \to l^+ l^-) 崩壊分岐比</td>
<td>(Br(J/\psi \to l^+ l^-))</td>
<td>11.87±0.12 %</td>
</tr>
<tr>
<td>(K^*(892)^{\pm\pm} \to K^\pm \pi^0) 崩壊分岐比</td>
<td>(Br(K^*(892)^{\pm\pm} \to K^\pm \pi^0))</td>
<td>33.3 % (*)</td>
</tr>
</tbody>
</table>

表 3.4: \(B^\pm \to \psi' K^*(892)^{\pm\pm}\) 崩壊分岐比算出に使用した値

(*) : 100 %の確率で \(K, \pi\) に崩壊するとして、SU(3) の flavor symmetry を仮定した。

以上より崩壊分岐比は

\[
Br(B^\pm \to \psi' K^*(892)^{\pm\pm}) = (4.2 \pm 0.8) \times 10^{-4}
\]

と得た。

独立に行われた BaBar 実験の結果 [11]

\[
Br(B^\pm \to \psi' K^*(892)^{\pm\pm}) = (5.9 \pm 1.2) \times 10^{-4}
\]

との差は、1.2\(\sigma\) であり、互いに無矛盾であると言える。
第4章 まとめ

$Z(4430)^\pm$ の中性パートナー粒子の探索を行う準備研究として、$\psi' \to J/\psi \pi^+\pi^-$ モードを用いて $B^\pm \to \psi'\pi^0K^\pm$ 過程の再構成を行った。

データ解析手順の正当性を検証するため、Belle 検出器で 2000 年から 2004 年までの期間に収集した $2.77 \times 10^8 B$ 中間子対生成事象のデータを用いて、$B^\pm \to \psi'\pi^0K^\pm$ 崩壊事象の信号抽出を行い、シグナル事象数 N_{sig} を

$$N_{\text{sig}} = 168 \pm 22 \text{ 事象}$$

と得た。

さらに、$B^\pm \to \psi'K^*(892)^\pm$ 崩壊過程の寄与を $K^\pm\pi^0$ 不変質量分布から抽出し、$N(B^\pm \to \psi'K^*(892)^\pm) = 69 \pm 13$ 事象を得た。

これをもとに算出した崩壊分岐比は

$$Br(B^\pm \to \psi'K^*(892)^\pm) = (4.2 \pm 0.8) \times 10^{-4}$$

となり、これは独立に行われた BaBar 実験の測定と無矛盾であった。よって、$B^\pm \to \psi'\pi^0K^\pm$ 崩壊過程の再構成手順が正当であると確認でき、ψ' 崩壊する未知の共鳴状態の探索の研究を展開する可能性を明らかにした。
参考文献

チャーム」を持つ粒子
[14] 津田幸枝, $B^0 \to \psi'\pi^0$ 過程の崩壊分岐比測定, 修士学位論文 (2009)
[15] 辻知佳, 荷電 B 中間子から J/ψ 中間子・η 中間子・K 中間子への三体崩壊の研究, 修士学位論文
(2010)
[16] 石塚規友紀, $B^\pm \to \psi'\pi^0K^\pm$ 崩壊の研究, 修士学位論文 (2011)
謝辞

本研究を行うにあたり、お世話になりました方々に紙面を借りてお礼申し上げます。
はじめに、このような素晴らしい国際的な実験に携わる機会を与えて下さった高エネルギー物理学教の林井先生、宮林先生に深く感謝致します。
林井先生には、研究を進める中で理解が不十分だった点についての確かなご指導・助言を頂きました。
直接ご指導頂きました宮林先生には大変お世話になりました。高エネルギー物理学の基礎をはじめ、
チャーモニウムの物理や解析方法、研究に携わる姿勢など、多くのことをご指導して頂きました。本当
にありがとうございました。
また、Vishal Bhadwaj さんには、解析手法や有用なプログラムを教えて頂きました。ありがとうございました。
さらに、日々の疑問や質問に丁寧に答えて下さった岩下先輩をはじめ、研究室の皆様、
KEK の皆様に心から感謝致します。特に、共に研究に勤しんだ磯村さん、木原さん、近藤さん、平山
さんとはお互いに刺激し合いながらも、楽しく充実した日々を過ごせたことを、本当に感謝します。
最後に、このような充実した研究生活を送ることができたのは、私たち支えて下さった皆様のおかげ
です。支えて下さった皆様に心から感謝致します。